Gonzalez-Iglesias, D., Aksoy, A., Esperante, D., Gimeno, B., Latina, A., Boronat, M., et al. (2021). X-band RF photoinjector design for the CompactLight project. Nucl. Instrum. Methods Phys. Res. A, 1014, 165709–10pp.
Abstract: RF photoinjectors have been under development for several decades to provide the high-brightness electron beams required for X-ray Free Electron Lasers. This paper proposes a photoinjector design that meets the Horizon 2020 CompactLight design study requirements. It consists of a 5.6-cell, X-band (12 GHz) RF gun, an emittance-compensating solenoid and two X-band traveling-wave structures that accelerate the beam out of the space-charge-dominated regime. The RF gun is intended to operate with a cathode gradient of 200 MV/m, and the TW structures at a gradient of 65 MV/m. The shape of the gun cavity cells was optimized to reduce the peak electric surface field. An assessment of the gun RF breakdown likelihood is presented as is a multipacting analysis for the gun coaxial coupler. RF pulse heating on the gun inner surfaces is also evaluated and beam dynamics simulations of the 100 MeV photoinjector are summarized.
|
Gonzalez-Iglesias, D., Esperante, D., Gimeno, B., Blanch, C., Fuster-Martinez, N., Martinez-Reviriego, P., et al. (2023). Analysis of the Multipactor Effect in an RF Electron Gun Photoinjector. IEEE Trans. Electron Devices, 70(1), 288–295.
Abstract: The objective of this work is the evaluation of the risk of suffering a multipactor discharge within an RF electron gun photoinjector. Photoinjectors are a type of source for intense electron beams, which are the main electron source for synchrotron light sources, such as free-electron lasers. The analyzed device consists of 1.6 cells and it has been designed to operate at the S-band. Besides, around the RF gun there is an emittance compensation solenoid, whose magnetic field prevents the growth of the electron beam emittance, and thus the degradation of the properties of the beam. The multipactor analysis is based on a set of numerical simulations by tracking the trajectories of the electron cloud in the cells of the device. To reach this aim, an in-house multipactor code was developed. Specifically, two different cases were explored: with the emittance compensation solenoid assumed to be off and with the emittance compensation solenoid in operation. For both the cases, multipactor simulations were carried out exploring different RF electric field amplitudes. Moreover, for a better understanding of the multipactor phenomenon, the resonant trajectories of the electrons and the growth rate of the electrons population are investigated.
|
Gonzalez-Iglesias, D., Esperante, D., Gimeno, B., Boronat, M., Blanch, C., Fuster-Martinez, N., et al. (2021). Analytical RF Pulse Heating Analysis for High Gradient Accelerating Structures. IEEE Trans. Nucl. Sci., 68(2), 78–91.
Abstract: The main aim of this work is to present a simple method, based on analytical expressions, for obtaining the temperature increase due to the Joule effect inside the metallic walls of an RF accelerating component. This technique relies on solving the 1-D heat-transfer equation for a thick wall, considering that the heat sources inside the wall are the ohmic losses produced by the RF electromagnetic fields penetrating the metal with finite electrical conductivity. Furthermore, it is discussed how the theoretical expressions of this method can be applied to obtain an approximation to the temperature increase in realistic 3-D RF accelerating structures, taking as an example the cavity of an RF electron photoinjector and a traveling wave linac cavity. These theoretical results have been benchmarked with numerical simulations carried out with commercial finite-element method (FEM) software, finding good agreement among them. Besides, the advantage of the analytical method with respect to the numerical simulations is evidenced. In particular, the model could be very useful during the design and optimization phase of RF accelerating structures, where many different combinations of parameters must be analyzed in order to obtain the proper working point of the device, allowing to save time and speed up the process. However, it must be mentioned that the method described in this article is intended to provide a quick approximation to the temperature increase in the device, which of course is not as accurate as the proper 3-D numerical simulations of the component.
|
Gonzalez-Iglesias, D., Gimeno, B., Esperante, D., Martinez-Reviriego, P., Martin-Luna, P., Fuster-Martinez, N., et al. (2024). Non-resonant ultra-fast multipactor regime in dielectric-assist accelerating structures. Results Phys., 56, 107245–12pp.
Abstract: The objective of this work is the evaluation of the risk of suffering a multipactor discharge in an S-band dielectric-assist accelerating (DAA) structure for a compact low-energy linear particle accelerator dedicated to hadrontherapy treatments. A DAA structure consists of ultra-low loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure, with the advantage of having an extremely high quality factor and very high shunt impedance at room temperature, and it is therefore proposed as a potential alternative to conventional disk-loaded copper structures. However, it has been observed that these structures suffer from multipactor discharges. In fact, multipactor is one of the main problems of these devices, as it limits the maximum accelerating gradient. Because of this, the analysis of multipactor risk in the early design steps of DAA cavities is crucial to ensure the correct performance of the device after fabrication. In this paper, we present a comprehensive and detailed study of multipactor in our DAA design through numerical simulations performed with an in-house developed code based on the Monte-Carlo method. The phenomenology of the multipactor (resonant electron trajectories, electron flight time between impacts, etc.) is described in detail for different values of the accelerating gradient. It has been found that in these structures an ultra-fast non-resonant multipactor appears, which is different from the types of multipactor theoretically studied in the scientific literature. In addition, the effect of several low electron emission coatings on the multipactor threshold is investigated. Furthermore, a novel design based on the modification of the DAA cell geometry for multipactor mitigation is introduced, which shows a significant increase in the accelerating gradient handling capabilities of our prototype.
|
Gonzalez-Iglesias, D., Gimeno, B., Esperante, D., Martinez-Reviriego, P., Martin-Luna, P., Pedraza, L. K., et al. (2024). A rapid method for prediction of the non-resonant ultra-fast multipactor regime in high gradient RF accelerating structures. Results Phys., 64, 107921–9pp.
Abstract: The purpose of this work is to present an analytical method that allows to estimate in an approximate and fast way the presence of the non-resonant and ultra-fast multipactor effect in RF accelerating structures in the presence of high gradient electromagnetic fields. This single-surface multipactor regime, which has been little studied in the scientific literature, is characterised by appearing only under conditions of very strong RF electric fields (of the order of tens or hundreds of MV/m), where it is predominant over other types of single- or dual-surface resonance described in classical multipactor theory. This type of multipactor causes a rapid growth of the electron population and poses a serious drawback in the operation of RF accelerator components operating under high gradient conditions. Specifically, in dielectric-assist accelerating structures (DAA) it has been experimentally found that the presence of multipactor limits the maximum operating gradient of these components due to a significant increase in the reflected power due to the discharge, being this phenomenon the main problem to overcome. In a previous work, we found and described in detail by means of numerical simulations the presence of this non-resonant and ultra-fast multipactor regime in a DAA structure design for hadrontherapy. Here we aim to present a simple and fast method to predict the presence of this non-resonant and ultra-fast multipactor regime in RF accelerator structures with cylindrical revolution symmetry around the acceleration axis. This method is especially useful in the design stages of accelerating structures as it provides much faster results than numerical simulations of the multipactor, with quite good accuracy in a wide range of cases as shown in this paper.
|
Lei, B. F., Zhang, H., Bontoiu, C., Bonatto, A., Martin-Luna, P., Liu, B., et al. (2025). Leaky surface plasmon-based wakefield acceleration in nanostructured carbon nanotubes. Plasma Phys. Control. Fusion, 67(6), 065036–11pp.
Abstract: Metallic carbon nanotubes (CNTs) can provide ultra-dense, homogeneous plasma capable of sustaining resonant plasma waves-known as plasmons-with ultra-high field amplitudes. These waves can be efficiently driven by either high-intensity laser pulses or high-density relativistic charged particle beams. In this study, we use numerical simulations to propose that electrons and positrons can be accelerated in wakefields generated by the leaky electromagnetic field of surface plasmons. These plasmons are excited when a high-intensity optical laser pulse propagates paraxially through a cylindrical vacuum channel structured within a CNT forest. The wakefield is stably sustained by a non-evanescent longitudinal field with TV m-1-level amplitudes. This mechanism differs significantly from the plasma wakefield generation in uniform gaseous plasmas. Travelling at the speed of light in a vacuum, with phase-matched focusing fields, the wakefield acceleration is highly efficient for both electron and positron beams. We also examine two potential electron injection mechanisms: edge injection and self-injection. Both mechanisms are feasible with current laser facilities, paving the way for experimental realisation. Beyond presenting a novel method toward ultra-compact, high-energy solid-state plasma particle accelerators with ultra-high acceleration gradients, this work also expands the potential of high-energy plasmonics.
|
Martin-Luna, P., Bonatto, A., Bontoiu, C., Lei, B. F., Xia, G. X., & Resta-Lopez, J. (2025). Wakefield excitation and stopping power in multi-walled carbon nanotubes: one- and two-fluid model. J. Phys. D, 58(22), 225203–15pp.
Abstract: The motion of charged particles along multi-walled carbon nanotubes (MWCNTs) can induce electromagnetic modes. This wake effect represents an innovative approach for short-wavelength, high-gradient particle acceleration and for producing brilliant radiation sources. This article examines the excitation of wakefields produced by a point-like charge moving parallel to MWCNTs using the linearized hydrodynamic theory. General expressions for the excited longitudinal and transverse wakefields and the stopping power have been derived, relating them to the resonant wavenumbers obtainable from the dispersion relations under the assumption of negligible friction. As the number of walls in MWCNTs increases, they exhibit a richer spectrum of plasmonic excitations, which has been widely studied as a function of the driver velocity in this manuscript. This comprehensive study provides a deeper understanding of the physical phenomena behind plasmonic excitations in MWCNTs, paving the way for potential applications in particle acceleration, nanotechnology, and materials science.
|
Martin-Luna, P., Bonatto, A., Bontoiu, C., Xia, G., & Resta-Lopez, J. (2024). Plasmonic excitations in double-walled carbon nanotubes. Results Phys., 60, 107698–11pp.
Abstract: The interactions of charged particles moving paraxially in multi-walled carbon nanotubes (MWCNTs) may excite electromagnetic modes. This wake effect has recently been proposed as a potential novel method of short-wavelength high-gradient particle acceleration. In this work, the excitation of wakefields in double-walled carbon nanotubes (DWCNTs) is studied by means of the linearized hydrodynamic theory. General expressions have been derived for the excited longitudinal and transverse wakefields and related to the resonant wavenumbers which can be obtained from the dispersion relation. In the absence of friction, the stopping power of the wakefield driver, modelled here as a charged macroparticle, can be written solely as a function of these resonant wavenumbers. The dependencies of the wakefields on the radii of the DWCNT and the driving velocity have been studied. DWCNTs with inter-wall distances much smaller than the internal radius may be a potential option to obtain higher wakefields for particle acceleration compared to single-walled carbon nanotubes (SWCNTs).
|
Martin-Luna, P., Esperante, D., Casaña, J. V., Fernandez Prieto, A., Fuster-Martinez, N., Rivas, I. G., et al. (2025). Effects of the passive voltage divider in a photomultiplier tube: Analytical model, simulations and experimental validation. Sens. Actuator A-Phys., 381, 116057–11pp.
Abstract: The effects of the passive resistive voltage divider network in a photomultiplier tube (PMT) have been investigated by developing an in-house Monte Carlo simulation code and compared with experimental measurements and an analytical model. The simulation code follows an iterative procedure that takes into account the transport and amplification of the electrons within the device depending on the electrostatic fields produced by the electrode voltages. The PMT gain, dynode voltages, rise time and transit time have been studied as a function of the photocathode current and supply voltage. A good agreement between the analytical model, the simulations and numerous experimental measurements using a Hamamatsu R13408-100 PMT has been obtained. The simulation results endorse the use of logistic functions within the analytical model to account for the collection efficiency in the last dynode stages. This works deepens the understanding of passive voltage dividers and develops an advanced behavioral circuit model of photomultiplier tubes. Although validated fora single PMT, the proposed methodology is applicable to any PMT model. This aids in optimizing the design of fully active voltage dividers, to be applied in extremely pulsed applications with high count rates such as prompt gamma-ray imaging during proton therapy.
|
Martin-Luna, P., Esperante, D., Prieto, A. F., Fuster-Martinez, N., Rivas, I. G., Gimeno, B., et al. (2024). Simulation of electron transport and secondary emission in a photomultiplier tube and validation. Sens. Actuator A-Phys., 365, 114859–10pp.
Abstract: The electron amplification and transport within a photomultiplier tube (PMT) has been investigated by developing an in-house Monte Carlo simulation code. The secondary electron emission in the dynodes is implemented via an effective electron model and the Modified Vaughan's model, whereas the transport is computed with the Boris leapfrog algorithm. The PMT gain, rise time and transit time have been studied as a function of supply voltage and external magnetostatic field. A good agreement with experimental measurements using a Hamamatsu R13408-100 PMT was obtained. The simulations have been conducted following different treatments of the underlying geometry: three-dimensional, two-dimensional and intermediate (2.5D). The validity of these approaches is compared. The developed framework will help in understanding the behavior of PMTs under highly intense and irregular illumination or varying external magnetic fields, as in the case of prompt gamma-ray measurements during pencil-beam proton therapy; and aid in optimizing the design of voltage dividers with behavioral circuit models.
|