|   | 
Details
   web
Records
Author (up) Aliaga, R.J.
Title Real-Time Estimation of Zero Crossings of Sampled Signals for Timing Using Cubic Spline Interpolation Type Journal Article
Year 2017 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 64 Issue 8 Pages 2414-2422
Keywords Digital arithmetic; digital circuits; digital timing; field-programmable gate array (FPGA); interpolation; signal processing algorithms; splines time estimation; time resolution
Abstract A scheme is proposed for hardware estimation of the location of zero crossings of sampled signals with subsample resolution for timing applications, which consists of interpolating the signal with a cubic spline near the zero crossing and then finding the root of the resulting polynomial. An iterative algorithm based on the bisection method is presented that obtains one bit of the result per step and admits an efficient digital implementation using fixed-point representation. In particular, the root estimation iteration involves only two additions, and the initial values can be obtained from finite impulse response (FIR) filters with certain symmetry properties. It is shown that this allows online real-time estimation of timestamps in free-running sampling detector systems with improved accuracy with respect to the more common linear interpolation. The method is evaluated with simulations using ideal and real timing signals, and estimates are given for the resource usage and speed of its implementation.
Address [Aliaga, Ramon J.] Inst Fis Corpuscular, Paterna 46980, Spain, Email: raalva@upvnet.upv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000411027700008 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3301
Permanent link to this record
 

 
Author (up) Barrientos, D.; Bellato, M.; Bazzacco, D.; Bortolato, D.; Cocconi, P.; Gadea, A.; Gonzalez, V.; Gulmini, M.; Isocrate, R.; Mengoni, D.; Pullia, A.; Recchia, F.; Rosso, D.; Sanchis, E.; Toniolo, N.; Ur, C.A.; Valiente-Dobon, J.J.
Title Performance of the Fully Digital FPGA-Based Front-End Electronics for the GALILEO Array Type Journal Article
Year 2015 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 62 Issue 6 Pages 3134-3139
Keywords FPGA; front-end electronics; gamma-ray spectroscopy; germanium detectors
Abstract In this work we present the architecture and results of a fully digital Front End Electronics (FEE) read out system developed for the GALILEO array. The FEE system, developed in collaboration with the Advanced Gamma Tracking Array (AGATA) collaboration, is composed of three main blocks: preamplifiers, digitizers and preprocessing electronics. The slow control system contains a custom Linux driver, a dynamic library and a server implementing network services. This work presents the first results of the digital FEE system coupled with a GALILEO germanium detector, which has demonstrated the capability to achieve an energy resolution of 1.53% at an energy of 1.33 MeV, similar to the one obtained with a conventional analog system. While keeping a good performance in terms of energy resolution, digital electronics will allow to instrument the full GALILEO array with a versatile system with high integration and low power consumption and costs.
Address [Barrientos, D.; Bortolato, D.; Cocconi, P.; Gulmini, M.; Rosso, D.; Toniolo, N.; Valiente-Dobon, J. J.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Padua, Italy, Email: diego.barrientos@lnl.infn.it
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000372013500005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2612
Permanent link to this record
 

 
Author (up) Barrientos, D.; Gonzalez, V.; Bellato, M.; Gadea, A.; Bazzacco, D.; Blasco, J.M.; Bortolato, D.; Egea, F.J.; Isocrate, R.; Pullia, A.; Rampazzo, G.; Sanchis, E.; Triossi, A.
Title Multiple Register Synchronization With a High-Speed Serial Link Using the Aurora Protocol Type Journal Article
Year 2013 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 60 Issue 5 Pages 3521-3525
Keywords
Abstract In this work, the development and characterization of a multiple synchronous registers interface communicating with a high-speed serial link and using the Aurora protocol is presented. A detailed description of the developing process and the characterization methods and hardware test benches are also included. This interface will implement the slow control buses of the digitizer cards for the second generation of electronics for the Advanced GAmma Tracking Array (AGATA).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000325827700014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1612
Permanent link to this record
 

 
Author (up) Belver, D.; Cabanelas, P.; Castro, E.; Garzon, J.A.; Gil, A.; Gonzalez-Diaz, D.; Koenig, W.; Traxler, M.
Title Performance of the Low-Jitter High-Gain/Bandwidth Front-End Electronics of the HADES tRPC Wall Type Journal Article
Year 2010 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 57 Issue 5 Pages 2848-2856
Keywords Charge to width algorithm; fast amplifying and digitizing electronics; front-end electronics; HADES; time of flight; timing RPC
Abstract A front-end electronics (FEE) chain for accurate time measurements has been developed for the new Resistive Plate Chamber (RPC)-based Time-of-Flight (TOF) wall of the High Acceptance Di-Electron Spectrometer (HADES). The wall covers an area of around 8 m(2) divided in 6 sectors. In total, 1122 4-gap timing RPC cells are read-out by 2244 time and charge sensitive channels. The FEE chain consists of 2 custom-made boards: a 4-channel Daughter BOard(DBO) and a 32-channel MotherBOard (MBO). The DBO uses a fast 2 GHz amplifier feeding a dual high-speed discriminator. The time and charge information are encoded, respectively, in the leading edge and the width of an LVDS signal. Each MBO houses up to 8 DBOs providing them regulated voltage supply, threshold values via DACs, test signals and, additionally, routing out a signal proportional to the channel multiplicity needed for a 1st level trigger decision. The MBO delivers LVDS signals to a multi-purpose Trigger Readout Board (TRB) for data acquisition. The FEE allows achieving a system resolution around 75 ps fulfilling comfortably the requirements of the HADES upgrade [1]. The commissioning of the whole RPC wall is finished and the 6 sectors are already mounted in their final position in the HADES spectrometer and ready to take data during the beam-times foreseen for 2010.
Address [Belver, Daniel; Cabanelas, P.; Castro, E.; Garzon, J. A.] Univ Santiago Compostela, LabCAF, Santiago De Compostela 15782, Spain, Email: daniel.belver@usc.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes ISI:000283440400007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 349
Permanent link to this record
 

 
Author (up) Boronat, M.; Marinas, C.; Frey, A.; Garcia, I.; Schwenker, B.; Vos, M.; Wilk, F.
Title Physical Limitations to the Spatial Resolution of Solid-State Detectors Type Journal Article
Year 2015 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 62 Issue 1 Pages 381-386
Keywords Charged particle tracking; silicon detectors; solid state devices
Abstract In this paper we explore the effect of delta-ray emission and fluctuations in the signal deposition on the detection of charged particles in silicon-based detectors. We show that these two effects ultimately limit the resolution that can be achieved by interpolation of the signal in finely segmented position-sensitive solid-state devices.
Address [Boronat, M.; Garcia, I.; Vos, M.] IFIC UVEG CSIC, E-46980 Valencia, Spain, Email: marcel.vos@ific.uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000349672900025 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2140
Permanent link to this record
 

 
Author (up) Bouhova-Thacker, E.; Kostyukhin, V.; Koffas, T.; Liebig, W.; Limper, M.; Piacquadio, G.N.; Prokofiev, K.; Weiser, C.; Wildauer, A.
Title Expected Performance of Vertex Reconstruction in the ATLAS Experiment at the LHC Type Journal Article
Year 2010 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 57 Issue 2 Pages 760-767
Keywords Data analysis; data reconstruction; high energy physics; pattern recognition; reconstruction algorithms; tracking; vertex detectors
Abstract In the harsh environment of the Large Hadron Collider at CERN (design luminosity of 10(34) cm(-2) s(-1)) efficient reconstruction of vertices is crucial for many physics analyses. Described in this paper is the expected performance of the vertex reconstruction used in the ATLAS experiment. The algorithms for the reconstruction of primary and secondary vertices as well as for finding photon conversions and vertex reconstruction in jets are described. The implementation of vertex algorithms which follows a very modular design based on object-oriented C++ is presented. A user-friendly concept allows event reconstruction and physics analyses to compare and optimize their choice among different vertex reconstruction strategies. The performance of implemented algorithms has been studied on a variety of Monte Carlo samples and results are presented.
Address [Bouhova-Thacker, Eva] Univ Lancaster, Lancaster LA1 4YB, England, Email: bouhova@mail.cern.ch
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes ISI:000276679200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 260
Permanent link to this record
 

 
Author (up) Briz, J.A.; Nerio, A.N.; Ballesteros, C.; Borge, M.J.G.; Martinez, P.; Perea, A.; Tavora, V.G.; Tengblad, O.; Ciemala, M.; Maj, A.; Olko, P.; Parol, W.; Pedracka, A.; Sowicki, B.; Zieblinski, M.; Nacher, E.
Title Proton Radiographs Using Position-Sensitive Silicon Detectors and High-Resolution Scintillators Type Journal Article
Year 2022 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 69 Issue 4 Pages 696-702
Keywords LaBr3; particle tracking; proton computed tomography (pCT); proton radiograph; proton therapy; scintillation detectors; silicon detectors
Abstract Proton therapy is a cancer treatment technique currently in growth since it offers advantages with respect to conventional X-ray and gamma-ray radiotherapy. In particular, better control of the dose deposition allowing to reach higher conformity in the treatments causing less secondary effects. However, in order to take full advantage of its potential, improvements in treatment planning and dose verification are required. A new prototype of proton computed tomography scanner is proposed to design more accurate and precise treatment plans for proton therapy. Our prototype is formed by double-sided silicon strip detectors and scintillators of LaBr3(Ce) with high energy resolution and fast response. Here, the results obtained from an experiment performed using a 100-MeV proton beam are presented. Proton radiographs of polymethyl methacrylate (PMMA) samples of 50-mm thickness with spatial patterns in aluminum were taken. Their properties were studied, including reproduction of the dimensions, spatial resolution, and sensitivity to different materials. Structures of up to 2 mm are well resolved and the sensitivity of the system was enough to distinguish the thicknesses of 10 mm of aluminum or PMMA. The spatial resolution of the images was 0.3 line pairs per mm (MTF-10%). This constitutes the first step to validate the device as a proton radiography scanner.
Address [Briz, J. A.; Nerio, A. N.; Ballesteros, C.; Borge, M. J. G.; Martinez, P.; Perea, A.; Tavora, V. G.; Tengblad, O.] Inst Estruct Mat CSIC, Madrid 28006, Spain, Email: jose.briz@csic.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000803113800017 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5245
Permanent link to this record
 

 
Author (up) Brown, J.M.C.; Gillam, J.E.; Paganin, D.M.; Dimmock, M.R.
Title Laplacian Erosion: An Image Deblurring Technique for Multi-Plane Gamma-Cameras Type Journal Article
Year 2013 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 60 Issue 5 Pages 3333-3342
Keywords
Abstract Laplacian Erosion, an image deblurring technique for multi-plane Gamma-cameras, has been developed and tested for planar imaging using a GEANT4 Monte Carlo model of the Pixelated Emission Detector for RadioisOtopes (PEDRO) as a test platform. A contrast and Derenzo-like phantom composed of I-125 were both employed to investigate the dependence of detection plane and pinhole geometry on the performance of Laplacian Erosion. Three different pinhole geometries were tested. It was found that, for the test system, the performance of Laplacian Erosion was inversely proportional to the detection plane offset, and directly proportional to the pinhole diameter. All tested pinhole geometries saw a reduction in the level of image blurring associated with the pinhole geometry. However, the reduction in image blurring came at the cost of signal to noise ratio in the image. The application of Laplacian Erosion was shown to reduce the level of image blurring associated with pinhole geometry and improve recovered image quality in multi-plane Gamma-cameras for the targeted radiotracer I-125.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000325827200020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1609
Permanent link to this record
 

 
Author (up) Cabello, J.; Torres-Espallardo, I.; Gillam, J.E.; Rafecas, M.
Title PET Reconstruction From Truncated Projections Using Total-Variation Regularization for Hadron Therapy Monitoring Type Journal Article
Year 2013 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 60 Issue 5 Pages 3364-3372
Keywords
Abstract Hadron therapy exploits the properties of ion beams to treat tumors by maximizing the dose released to the target and sparing healthy tissue. With hadron beams, the dose distribution shows a relatively low entrance dose which rises sharply at the end of the range, providing the characteristic Bragg peak that drops quickly thereafter. It is of critical importance in order not to damage surrounding healthy tissues and/or avoid targeting underdosage to know where the delivered dose profile ends-the location of the Bragg peak. During hadron therapy, short-lived beta(+)-emitters are produced along the beam path, their distribution being correlated with the delivered dose. Following positron annihilation, two photons are emitted, which can be detected using a positron emission tomography (PET) scanner. The low yield of emitters, their short half-life, and the wash out from the target region make the use of PET, even only a few minutes after hadron irradiation, a challenging application. In-beam PET represents a potential candidate to estimate the distribution of beta(+)-emitters during or immediately after irradiation, at the cost of truncation effects and degraded image quality due to the partial rings required of the PET scanner. Time-of-flight (ToF) information can potentially be used to compensate for truncation effects and to enhance image contrast. However, the highly demanding timing performance required in ToF-PET makes this option costly. Alternatively, the use of maximum-a-posteriori-expectation-maximization (MAP-EM), including total variation (TV) in the cost function, produces images with low noise, while preserving spatial resolution. In this paper, we compare data reconstructed with maximum-likelihood-expectation-maximization (ML-EM) and MAP-EM using TV as prior, and the impact of including ToF information, from data acquired with a complete and a partial-ring PET scanner, of simulated hadron beams interacting with a polymethyl methacrylate (PMMA) target. The results show that MAP-EM, in the absence of ToF information, produces lower noise images and more similar data compared to the simulated beta(+) distributions than ML-EM with ToF information in the order of 200-600 ps. The investigation is extended to the combination of MAP-EM and ToF information to study the limit of performance using both approaches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000325827200023 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1610
Permanent link to this record
 

 
Author (up) Carrio, F.
Title The Data Acquisition System for the ATLAS Tile Calorimeter Phase-II Upgrade Demonstrator Type Journal Article
Year 2022 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 69 Issue 4 Pages 687-695
Keywords Large Hadron Collider; Data acquisition; Field programmable gate arrays; Clocks; Detectors; Computer architecture; Microprocessors; ATLAS tile calorimeter (TileCal); data acquisition (DAQ) systems; field-programmable gate array (FPGA); high energy physics; high-speed electronics
Abstract The tile calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the large hadron collider (LHC). In 2025, the LHC will be upgraded leading to the high luminosity LHC (HL-LHC). The HL-LHC will deliver an instantaneous luminosity up to seven times larger than the LHC nominal luminosity. The ATLAS Phase-II upgrade (2025-2027) will accommodate the subdetectors to the HL-LHC requirements. As part of this upgrade, the majority of the TileCal on-detector and off-detector electronics will be replaced using a new readout strategy, where the on-detector electronics will digitize and transmit digitized detector data to the off-detector electronics at the bunch crossing frequency (40 MHz). In the counting rooms, the off-detector electronics will compute reconstructed trigger objects for the first-level trigger and will store the digitized samples in pipelined buffers until the reception of a trigger acceptance signal. The off-detector electronics will also distribute the LHC clock to the on-detector electronics embedded within the digital data stream. The TileCal Phase-II upgrade project has undertaken an extensive research and development program that includes the development of a Demonstrator module to evaluate the performance of the new clock and readout architecture envisaged for the HL-LHC. The Demonstrator module equipped with the latest version of the on-detector electronics was built and inserted into the ATLAS experiment. The Demonstrator module is operated and read out using a Tile PreProcessor (TilePPr) Demonstrator which enables backward compatibility with the present ATLAS Trigger and Data AcQuisition (TDAQ), and the timing, trigger, and command (TTC) systems. This article describes in detail the main hardware and firmware components of the clock distribution and data acquisition systems for the Demonstrator module, focusing on the TilePPr Demonstrator.
Address [Carrio, F.] Inst Fis Corpuscular CSIC UV, Paterna 46980, Spain, Email: fernando.carrio@cern.ch
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000803113800016 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5244
Permanent link to this record