toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Cabello, J.; Torres-Espallardo, I.; Gillam, J.E.; Rafecas, M. doi  openurl
  Title PET Reconstruction From Truncated Projections Using Total-Variation Regularization for Hadron Therapy Monitoring Type Journal Article
  Year 2013 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 60 Issue 5 Pages 3364-3372  
  Keywords  
  Abstract Hadron therapy exploits the properties of ion beams to treat tumors by maximizing the dose released to the target and sparing healthy tissue. With hadron beams, the dose distribution shows a relatively low entrance dose which rises sharply at the end of the range, providing the characteristic Bragg peak that drops quickly thereafter. It is of critical importance in order not to damage surrounding healthy tissues and/or avoid targeting underdosage to know where the delivered dose profile ends-the location of the Bragg peak. During hadron therapy, short-lived beta(+)-emitters are produced along the beam path, their distribution being correlated with the delivered dose. Following positron annihilation, two photons are emitted, which can be detected using a positron emission tomography (PET) scanner. The low yield of emitters, their short half-life, and the wash out from the target region make the use of PET, even only a few minutes after hadron irradiation, a challenging application. In-beam PET represents a potential candidate to estimate the distribution of beta(+)-emitters during or immediately after irradiation, at the cost of truncation effects and degraded image quality due to the partial rings required of the PET scanner. Time-of-flight (ToF) information can potentially be used to compensate for truncation effects and to enhance image contrast. However, the highly demanding timing performance required in ToF-PET makes this option costly. Alternatively, the use of maximum-a-posteriori-expectation-maximization (MAP-EM), including total variation (TV) in the cost function, produces images with low noise, while preserving spatial resolution. In this paper, we compare data reconstructed with maximum-likelihood-expectation-maximization (ML-EM) and MAP-EM using TV as prior, and the impact of including ToF information, from data acquired with a complete and a partial-ring PET scanner, of simulated hadron beams interacting with a polymethyl methacrylate (PMMA) target. The results show that MAP-EM, in the absence of ToF information, produces lower noise images and more similar data compared to the simulated beta(+) distributions than ML-EM with ToF information in the order of 200-600 ps. The investigation is extended to the combination of MAP-EM and ToF information to study the limit of performance using both approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000325827200023 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1610  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva