|
Record |
Links |
|
Author |
Carrio, F. |
|
|
Title |
The Data Acquisition System for the ATLAS Tile Calorimeter Phase-II Upgrade Demonstrator |
Type |
Journal Article |
|
Year |
2022 |
Publication |
IEEE Transactions on Nuclear Science |
Abbreviated Journal |
IEEE Trans. Nucl. Sci. |
|
|
Volume |
69 |
Issue |
4 |
Pages |
687-695 |
|
|
Keywords |
Large Hadron Collider; Data acquisition; Field programmable gate arrays; Clocks; Detectors; Computer architecture; Microprocessors; ATLAS tile calorimeter (TileCal); data acquisition (DAQ) systems; field-programmable gate array (FPGA); high energy physics; high-speed electronics |
|
|
Abstract |
The tile calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the large hadron collider (LHC). In 2025, the LHC will be upgraded leading to the high luminosity LHC (HL-LHC). The HL-LHC will deliver an instantaneous luminosity up to seven times larger than the LHC nominal luminosity. The ATLAS Phase-II upgrade (2025-2027) will accommodate the subdetectors to the HL-LHC requirements. As part of this upgrade, the majority of the TileCal on-detector and off-detector electronics will be replaced using a new readout strategy, where the on-detector electronics will digitize and transmit digitized detector data to the off-detector electronics at the bunch crossing frequency (40 MHz). In the counting rooms, the off-detector electronics will compute reconstructed trigger objects for the first-level trigger and will store the digitized samples in pipelined buffers until the reception of a trigger acceptance signal. The off-detector electronics will also distribute the LHC clock to the on-detector electronics embedded within the digital data stream. The TileCal Phase-II upgrade project has undertaken an extensive research and development program that includes the development of a Demonstrator module to evaluate the performance of the new clock and readout architecture envisaged for the HL-LHC. The Demonstrator module equipped with the latest version of the on-detector electronics was built and inserted into the ATLAS experiment. The Demonstrator module is operated and read out using a Tile PreProcessor (TilePPr) Demonstrator which enables backward compatibility with the present ATLAS Trigger and Data AcQuisition (TDAQ), and the timing, trigger, and command (TTC) systems. This article describes in detail the main hardware and firmware components of the clock distribution and data acquisition systems for the Demonstrator module, focusing on the TilePPr Demonstrator. |
|
|
Address |
[Carrio, F.] Inst Fis Corpuscular CSIC UV, Paterna 46980, Spain, Email: fernando.carrio@cern.ch |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Ieee-Inst Electrical Electronics Engineers Inc |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0018-9499 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000803113800016 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
no |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
5244 |
|
Permanent link to this record |