toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gonzalez-Iglesias, D.; Gimeno, B.; Esperante, D.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster-Martinez, N.; Blanch, C.; Martinez, E.; Menendez, A.; Fuster, J.; Grudiev, A. url  doi
openurl 
  Title Non-resonant ultra-fast multipactor regime in dielectric-assist accelerating structures Type Journal Article
  Year 2024 Publication Results in Physics Abbreviated Journal Results Phys.  
  Volume 56 Issue Pages 107245 - 12pp  
  Keywords Multipactor; Dielectric accelerating structures; RF particle accelerators; Plasma discharge  
  Abstract (up) The objective of this work is the evaluation of the risk of suffering a multipactor discharge in an S-band dielectric-assist accelerating (DAA) structure for a compact low-energy linear particle accelerator dedicated to hadrontherapy treatments. A DAA structure consists of ultra-low loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure, with the advantage of having an extremely high quality factor and very high shunt impedance at room temperature, and it is therefore proposed as a potential alternative to conventional disk-loaded copper structures. However, it has been observed that these structures suffer from multipactor discharges. In fact, multipactor is one of the main problems of these devices, as it limits the maximum accelerating gradient. Because of this, the analysis of multipactor risk in the early design steps of DAA cavities is crucial to ensure the correct performance of the device after fabrication. In this paper, we present a comprehensive and detailed study of multipactor in our DAA design through numerical simulations performed with an in-house developed code based on the Monte-Carlo method. The phenomenology of the multipactor (resonant electron trajectories, electron flight time between impacts, etc.) is described in detail for different values of the accelerating gradient. It has been found that in these structures an ultra-fast non-resonant multipactor appears, which is different from the types of multipactor theoretically studied in the scientific literature. In addition, the effect of several low electron emission coatings on the multipactor threshold is investigated. Furthermore, a novel design based on the modification of the DAA cell geometry for multipactor mitigation is introduced, which shows a significant increase in the accelerating gradient handling capabilities of our prototype.  
  Address [Gonzalez-Iglesias, Daniel; Gimeno, Benito; Esperante, Daniel; Martinez-Reviriego, Pablo; Martin-Luna, Pablo; Fuster-Martinez, Nuria; Blanch, Cesar; Martinez, Eduardo; Menendez, Abraham; Fuster, Juan] CSIC UV, Inst Fis Corpuscular IF, c Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: daniel.gonzalez-iglesias@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-3797 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001133850600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5866  
Permanent link to this record
 

 
Author Beacham, J. et al; Martinez-Vidal, F. url  doi
openurl 
  Title Physics beyond colliders at CERN: beyond the Standard Model working group report Type Journal Article
  Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 47 Issue 1 Pages 010501 - 114pp  
  Keywords beyond standard Model; dark matter; dark sector; axions; particle physics; accelerators  
  Abstract (up) The Physics Beyond Colliders initiative is an exploratory study aimed at exploiting the full scientific potential of the CERN's accelerator complex and scientific infrastructures through projects complementary to the LHC and other possible future colliders. These projects will target fundamental physics questions in modern particle physics. This document presents the status of the proposals presented in the framework of the Beyond Standard Model physics working group, and explore their physics reach and the impact that CERN could have in the next 10-20 years on the international landscape.  
  Address [Beacham, J.] Duke Univ, Durham, NC 27708 USA, Email: Gaia.Lanfranchi@lnf.infn.it  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000521343200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4341  
Permanent link to this record
 

 
Author Poley, L. et al; Lacasta, C.; Soldevila, U. url  doi
openurl 
  Title Characterisation of strip silicon detectors for the ATLAS Phase-II Upgrade with a micro-focused X-ray beam Type Journal Article
  Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 11 Issue Pages P07023 - 12pp  
  Keywords Inspection with x-rays; Si microstrip and pad detectors; Hybrid detectors; Instrumentation for particle accelerators and storage rings – high energy (linear accelerators, synchrotrons)  
  Abstract (up) The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential through a sizable increase in the luminosity up to 6.10(34) cm(-2) s(-1). A consequence of this increased luminosity is the expected radiation damage at 3000 fb(-1) after ten years of operation, requiring the tracking detectors to withstand fluences to over 1.10(16) 1 MeV n(eq)/cm(2) . In order to cope with the consequent increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk). Two proposed detectors for the ATLAS strip tracker region of the ITk were characterized at the Diamond Light Source with a 3 μm FWHM 15 keV micro focused X-ray beam. The devices under test were a 320 μm thick silicon stereo (Barrel) ATLAS12 strip mini sensor wire bonded to a 130 nm CMOS binary readout chip (ABC130) and a 320 μm thick full size radial (end-cap) strip sensor – utilizing bi-metal readout layers – wire bonded to 250 nm CMOS binary readout chips (ABCN-25). A resolution better than the inter strip pitch of the 74.5 μm strips was achieved for both detectors. The effect of the p-stop diffusion layers between strips was investigated in detail for the wire bond pad regions. Inter strip charge collection measurements indicate that the effective width of the strip on the silicon sensors is determined by p-stop regions between the strips rather than the strip pitch.  
  Address [Poley, L.; Bloch, I.; Diez, S.; Gregor, I. -M.; Lohwasser, K.] DESY, Notkestr, Hamburg, Germany, Email: Anne-Luise.Poley@desy.de  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000387763000014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2872  
Permanent link to this record
 

 
Author Scandale, W. et al; Lari, L. doi  openurl
  Title Optimization of the crystal assisted collimation of the SPS beam Type Journal Article
  Year 2013 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 726 Issue 1-3 Pages 182-186  
  Keywords Accelerator; Beam collimation; Crystal; Channeling  
  Abstract (up) The possibility for optimization of crystal assisted collimation has been studied at the CERN SPS for stored beams of protons and Pb ions with 270 GeV/c per unit charge. A bent silicon crystal used as a primary collimator deflects halo particles in the channeling regime, directing them into a tungsten absorber. In channeling conditions a strong reduction of off-momentum particle numbers produced in the crystal and absorber, which form collimation leakage, has been observed in the first high dispersion (HD) area downstream. The present study shows that the collimation leakage is minimal for some values of the absorber offset relative to the crystal. The optimal offset value is larger for Pb ions because of their considerably larger ionization losses in the crystal, which cause large increases of particle betatron oscillation amplitudes. The optimal absorber offset allows obtaining maximal efficiency of crystal-assisted collimation.  
  Address [Scandale, W.; Arduini, G.; Butcher, M.; Cerutti, F.; Gilardoni, S.; Lari, L.; Lechner, A.; Losito, R.; Masi, A.; Mereghetti, A.; Metral, E.; Mirarchi, D.; Montesano, S.; Redaelli, S.; Schoofs, P.; Smirnov, G.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland, Email: alexander.taratin@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000326482200020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1694  
Permanent link to this record
 

 
Author Resta-Lopez, J. doi  openurl
  Title Nonlinear protection of beam delivery systems for multi-TeV linear colliders Type Journal Article
  Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 8 Issue Pages P11010 - 19pp  
  Keywords Beam Optics; Beam dynamics; Accelerator Subsystems and Technologies; Accelerator modelling and simulations (multi-particle dynamics; single-particle dynamics)  
  Abstract (up) The post-linac energy collimation system of future e(+)e(-) multi-TeV linear colliders is designed to fulfil an essential function of protection of the Beam Delivery System (BDS) against miss-steered or errant beams likely generated by failure modes in the main linac. For the case of the Compact Linear Collider (CLIC), the energy collimators are required to withstand the impact of a full bunch train in case of failure. This condition makes the design of the energy collimation system especially challenging, if we take into account the need to dispose of an unprecedented transverse beam energy density per beam of the order of GJ/mm(2), when assuming the nominal CLIC beam parameters at 3 TeV centre-of-mass energy, which translates into an extremely high damage potential of uncontrolled beams. This leads to research activities involving new collimator materials and novel collimation techniques. The increase of the transverse spot size at the collimators using nonlinear magnets is a potential solution to guarantee the survival of the collimators. In this paper we present an alternative nonlinear optics based on a multipole magnet pair for energy collimation. In order to preserve an acceptable luminosity performance, we carefully study the general conditions for self-cancellation of optical aberrations between two multipoles. This nonlinear optics scheme is adapted to the requirements of the post-linac energy collimation system for the CLIC BDS, and its performance is investigated by means of beam tracking simulations. Although applied to the CLIC case, this nonlinear protection system could be adapted to other future colliders.  
  Address Univ Valencia, Inst Fis Corpuscular IFIC, Ctr Mixto CSIC, Inst Invest Paterna, Valencia 46071, Spain, Email: resta@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000329193500035 Approved no  
  Is ISI yes International Collaboration  
  Call Number IFIC @ pastor @ Serial 1697  
Permanent link to this record
 

 
Author Menendez, A.; Esperante, D.; Garcia-Olcina, R.; Torres, J.; Perez-Soler, J.; Marco, R.; Gimeno, B.; Martos, J.; Soret, J. doi  openurl
  Title RF Acquisition System Based on μTCA for Testing of High-Gradient Acceleration Cavities Type Journal Article
  Year 2022 Publication Electronics Abbreviated Journal Electronics  
  Volume 11 Issue 5 Pages 720 - 22pp  
  Keywords radio frequency; accelerator cavities; mu TCA systems; Low Level RF system  
  Abstract (up) The radio frequency (RF) laboratory hosted in the Corpuscular Physics Institute (IFIC) of the University of Valencia is designed to house a high-power and high-repetition-rate facility to test normal conduction RF accelerator cavities in the S-Band (2.9985 GHz) in order to perform R & D activities related to particle accelerator cavities. The system, which manages the entire process of RF signal generation, data acquisition and closed-loop control of the laboratory, is currently based on a modular and compact PXI platform system. This contribution details the development of a platform with similar features, but which is based on open architecture standards at both the hardware and software level. For this purpose, a complete system based on the μTCA platform has been developed. This new system must be able to work with accelerator cavities at other operating frequencies, such as 750 MHz, as well as to explore different options at firmware and software levels based on open-source codes.  
  Address [Menendez, Abraham; Esperante, Daniel; Marco, Ricardo; Gimeno, Benito] Univ Valencia, Inst Fis Corpuscular IF, CSIC, Paterna, Spain, Email: daniel.esperante@uv.es;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000772931900001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5189  
Permanent link to this record
 

 
Author Degiovanni, A.; Amaldi, U.; Bonomi, R.; Garlasche, M.; Garonna, A.; Verdu-Andres, S.; Wegner, R. doi  openurl
  Title TERA high gradient test program of RF cavities for medical linear accelerators Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 657 Issue 1 Pages 55-58  
  Keywords Medical accelerators; Hadrontherapy; Cyclinac; Linac; RF cavity; Breakdown Rate  
  Abstract (up) The scientific community and the medical industries are putting a considerable effort into the design of compact, reliable and cheap accelerators for hadrontherapy. Up to now only circular accelerators are used to deliver beams with energies suitable for the treatment of deep seated tumors. The TERA Foundation has proposed and designed a hadrontherapy facility based on the cyclinac concept: a high gradient linear accelerator placed downstream of a cyclotron used as an injector. The overall length of the linac, and therefore its final cost, is almost inversely proportional to the average accelerating gradient achieved in the linac. TERA, in collaboration with the CLIC RF group, has started a high gradient test program. The main goal is to study the high gradient behavior of prototype cavities and to determine the appropriate linac operating frequency considering important issues such as machine reliability and availability of distributed power sources. A preliminary test of a 3 GHz cavity has been carried out at the beginning of 2010, giving encouraging results. Further investigations are planned before the end of 2011. A set of 5.7 GHz cavities is under production and will be tested in a near future. The construction and test of a multi-cell structure is also foreseen.  
  Address [Degiovanni, A; Wegner, R] CERN, CH-1211 Geneva, Switzerland, Email: alberto.degiovanni@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000297085800010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 807  
Permanent link to this record
 

 
Author n_TOF Collaboration (Cano-Ott, D. et al); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title Neutron Capture Measuremetns on Minor Actinides at the n_TOF Facility at CERN: Past, Present and Future Type Journal Article
  Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.  
  Volume 59 Issue 2 Pages 1809-1812  
  Keywords n_TOF; Total Absorption Calorimeter; TAC; Neutron capture; Cross section; Nuclear waste; Transmutation; Generation IV; Accelerator driven system; ADS; Nuclear reactor; Nuclear energy; Nuclear data; Barium fluoride; Actinides; Plutonium; Americium; Uranium  
  Abstract (up) The successful development of advanced nuclear systems for sustainable energy production and nuclear waste management depends on high quality nuclear data libraries. Recent sensitivity studies and reports [1-3] have identified the need for substantially improving the accuracy of neutron cross-section data for minor actinides. The n_TOF collaboration has initiated an ambitious experimental program for the measurement of neutron capture cross sections of minor actinides. Two experimental setups have been constructed for this purpose: a Total Absorption Calorimeter (TAC) [4] for measuring neutron capture cross-sections of low-mass and/or radioactive samples and a set of two low neutron sensitivity C(6)D(6) detectors for the less radioactive materials.  
  Address [Cano-Ott, D; Alvarez-Velarde, F; Gonzalez-Romero, E; Guerrero, C; Martinez, T; Mendoza, E; Villamarin, D; Vicente, MC] Ctr Invest Energet Medioambientales & Technol CIE, Madrid, Spain, Email: daniel.cano@ciemat.es  
  Corporate Author Thesis  
  Publisher Korean Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0374-4884 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294080700085 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 737  
Permanent link to this record
 

 
Author Alesini, D.; Boni, R.; Di Pirro, G.; Di Raddo, R.; Ferrario, M.; Gallo, A.; Lollo, V.; Marcellini, F.; Palumbo, L.; Spizzo, V.; Mostacci, A.; Campogiani, G.; Persichelli, S.; Enomoto, A.; Higo, T.; Kakihara, K.; Kamitani, T.; Matsumoto, S.; Sugimura, T.; Yokoyama, K.; Verdu-Andres, S. doi  openurl
  Title The C-Band accelerating structures for SPARC photoinjector energy upgrade Type Journal Article
  Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 8 Issue Pages P05004 - 24pp  
  Keywords Acceleration cavities and magnets superconducting (high-temperature superconductor; radiation hardened magnets; normal-conducting; permanent magnet devices; wigglers and undulators); Accelerator Subsystems and Technologies; Instrumentation for FEL  
  Abstract (up) The use of C-Band structures for electron acceleration and production of high quality beams has been proposed and adopted in several linac projects all over the world. The two main projects that adopted such type of structures are the Japanese Free Electron Laser (FEL) project in Spring-8 and the SwissFEL project at Paul Scherrer Institute (PSI). Also the energy upgrade of the SPARC photo-injector at LNF-INFN (Italy) from 150 to more than 240 MeV will be done by replacing a low gradient S-Band accelerating structure with two C-band structures. The structures are Traveling Wave (TW) and Constant Impedance (CI), have symmetric axial input couplers and have been optimized to work with a SLED RF input pulse. The paper presents the design criteria of the structures, the realization procedure and the low and high power RF test results on a prototype. The high power tests have been carried out by the Frascati INFN Laboratories in close collaboration with the Japanese Laboratory KEK. Experimental results confirmed the feasibility of the operation of the prototype at 50 MV/m with about 10(6) breakdowns per pulse per meter. Such high gradients have not been reached before in C-Band systems and demonstrated the possibility to use C-band accelerators, if needed, at such high field level. The results of the internal inspection of the structure after the high power test are also presented.  
  Address [Alesini, D.; Boni, R.; Di Pirro, G.; Di Raddo, R.; Ferrario, M.; Gallo, A.; Lollo, V.; Marcellini, F.] Ist Nazl Fis Nucl, LNF, I-00044 Rome, Italy, Email: alesini@lnf.infn.it  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000320726000014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1512  
Permanent link to this record
 

 
Author Millar, W.L. et al; Bañon Caballero, D. doi  openurl
  Title High-Power Test of Two Prototype X-Band Accelerating Structures Based on SwissFEL Fabrication Technology Type Journal Article
  Year 2023 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 70 Issue 1 Pages 1-19  
  Keywords Radio frequency; Life estimation; Temperature measurement; Wires; Electric breakdown; Brazing; Rendering (computer graphics); Acceleration; breakdown; high gradient; linear accelerator cavity (LINAC); radio frequency (RF); test facilities; vacuum arc; X-band  
  Abstract (up) This article presents the design, construction, and high-power test of two $X$ -band radio frequency (RF) accelerating structures built as part of a collaboration between CERN and the Paul Scherrer Institute (PSI) for the compact linear collider (CLIC) study. The structures are a modified “tuning-free ” variant of an existing CERN design and were assembled using Swiss free electron laser (SwissFEL) production methods. The purpose of the study is two-fold. The first objective is to validate the RF properties and high-power performance of the tuning-free, vacuum brazed PSI technology. The second objective is to study the structures' high-gradient behavior to provide insight into the breakdown and conditioning phenomena as they apply to high-field devices in general. Low-power RF measurements showed that the structure field profiles were close to the design values, and both structures were conditioned to accelerating gradients in excess of 100 MV/m in CERN's high-gradient test facility. Measurements performed during the second structure test suggest that the breakdown rate (BDR) scales strongly with the accelerating gradient, with the best fit being a power law relation with an exponent of 31.14. In both cases, the test results indicate that stable, high-gradient operation is possible with tuning-free, vacuum brazed structures of this kind.  
  Address [Millar, William L. L.; Grudiev, Alexej; Wuensch, Walter; Lasheras, Nuria Catalan; McMonagle, Gerard; Volpi, Matteo; Paszkiewicz, Jan; Edwards, Amelia; Wegner, Rolf; Bursali, Hikmet; Woolley, Benjamin; Magazinik, Anastasiya; Syratchev, Igor; Vnuchenko, Anna; Pitman, Samantha; del Pozo Romano, Veronica; Caballero, David Banon] CERN, CH-1211 Geneva, Switzerland, Email: lee.millar@cern.ch  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000920658600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5471  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva