|
Abstract |
We study the eta'N interaction within a chiral unitary approach which includes pi N, eta N and related pseudoscalar meson-baryon coupled channels. Since the SU(3) singlet does not contribute to the standard interaction and the eta' is mostly a singlet, the resulting scattering amplitude is very small and inconsistent with the experimental scattering length. The additional consideration of vector meson-baryon states into the coupled channel scheme, via normal and anomalous couplings of pseudoscalar to vector mesons, enhances substantially the eta'N amplitude. We also exploit the freedom of adding to the Lagrangian a new term, allowed by the symmetries of QCD, which couples baryons to the singlet meson of SU(3). Adjusting the unknown strength to the eta'N scattering length, we obtain predictions for the elastic eta'N -> eta'N and inelastic eta'N -> eta N, pi N, K Lambda, K Sigma cross sections at low eta' energies, and discuss their significance. |
|