|
Aliaga, R. J. (2017). Real-Time Estimation of Zero Crossings of Sampled Signals for Timing Using Cubic Spline Interpolation. IEEE Trans. Nucl. Sci., 64(8), 2414–2422.
Abstract: A scheme is proposed for hardware estimation of the location of zero crossings of sampled signals with subsample resolution for timing applications, which consists of interpolating the signal with a cubic spline near the zero crossing and then finding the root of the resulting polynomial. An iterative algorithm based on the bisection method is presented that obtains one bit of the result per step and admits an efficient digital implementation using fixed-point representation. In particular, the root estimation iteration involves only two additions, and the initial values can be obtained from finite impulse response (FIR) filters with certain symmetry properties. It is shown that this allows online real-time estimation of timestamps in free-running sampling detector systems with improved accuracy with respect to the more common linear interpolation. The method is evaluated with simulations using ideal and real timing signals, and estimates are given for the resource usage and speed of its implementation.
|
|
|
Borys, D. et al, & Brzezinski, K. (2022). ProTheRaMon-a GATE simulation framework for proton therapy range monitoring using PET imaging. Phys. Med. Biol., 67(22), 224002–15pp.
Abstract: Objective. This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapy treatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, patient CT geometries, and intra-treatment PET imaging, taking into account therapy and imaging coordinate systems and activity decay during the PET imaging protocol specific to a given proton therapy facility. We present the ProTheRaMon framework and illustrate its potential use case and data processing steps for a patient treated at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow, Poland. Approach. The ProTheRaMon framework is based on GATE Monte Carlo software, the CASToR reconstruction package and in-house developed Python and bash scripts. The framework consists of five separated simulation and data processing steps, that can be further optimized according to the user's needs and specific settings of a given proton therapy facility and PET scanner design. Main results. ProTheRaMon is presented using example data from a patient treated at CCB and the J-PET scanner to demonstrate the application of the framework for proton therapy range monitoring. The output of each simulation and data processing stage is described and visualized. Significance. We demonstrate that the ProTheRaMon simulation platform is a high-performance tool, capable of running on a computational cluster and suitable for multi-parameter studies, with databases consisting of large number of patients, as well as different PET scanner geometries and settings for range monitoring in a clinical environment. Due to its modular structure, the ProTheRaMon framework can be adjusted for different proton therapy centers and/or different PET detector geometries. It is available to the community via github (Borys et al 2022).
|
|
|
Boughaba, N. E., Bouzid, B., & Yahlali, N. (2025). Assessment of Cerenkov optical noise in a brachytherapy scintillating fibre dosimeter with an air-core Ag-PTFE light guide. Radiat. Meas., 181, 107348–11pp.
Abstract: Plastic scintillating fibre dosimeters have been the subject of multiple studies in the field of medical dosimetry, due to their notable dosimetric properties, including water equivalence, small size and absence of energy and dose rate dependence. The main drawback of this dosimeter type in high dose-rate brachytherapy is the presence of Cerenkov photons produced by electrons with velocities exceeding the speed of light in the fibre plastic medium. In this work, aimed at minimizing Cerenkov noise at its source in a prototype scintillation fibre dosimeter, the plastic light guide exposed to the radiation field was replaced by an air-core Ag-PTFE light guide of miniature size. Cerenkov-to-signal ratio was first assessed in fibre bundles using a dedicated experimental setup and simulations. This ratio was found of about similar to 1 % for scintillating fibres when exposed to radiation in the energy range 1-2 MeV. The performance of the air-core Ag-PTFE light guide dosimeter was then studied, resulting in a decrease of the Cerenkov light in the total signal from similar to 50 % to less than 0.3%, compared to the standard dosimeter with a plastic optical light guide. The counterpart of this substantial reduction of optical noise is a reduction of 40% in the dosimeter light collection efficiency. However, this is not a limiting feature of this Cerenkov-free dosimeter, since further optical optimizations are possible, in addition to the use of a high-gain and high-sensitivity photodetector for its readout.
|
|
|
Carrio, F. (2022). The Data Acquisition System for the ATLAS Tile Calorimeter Phase-II Upgrade Demonstrator. IEEE Trans. Nucl. Sci., 69(4), 687–695.
Abstract: The tile calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at the large hadron collider (LHC). In 2025, the LHC will be upgraded leading to the high luminosity LHC (HL-LHC). The HL-LHC will deliver an instantaneous luminosity up to seven times larger than the LHC nominal luminosity. The ATLAS Phase-II upgrade (2025-2027) will accommodate the subdetectors to the HL-LHC requirements. As part of this upgrade, the majority of the TileCal on-detector and off-detector electronics will be replaced using a new readout strategy, where the on-detector electronics will digitize and transmit digitized detector data to the off-detector electronics at the bunch crossing frequency (40 MHz). In the counting rooms, the off-detector electronics will compute reconstructed trigger objects for the first-level trigger and will store the digitized samples in pipelined buffers until the reception of a trigger acceptance signal. The off-detector electronics will also distribute the LHC clock to the on-detector electronics embedded within the digital data stream. The TileCal Phase-II upgrade project has undertaken an extensive research and development program that includes the development of a Demonstrator module to evaluate the performance of the new clock and readout architecture envisaged for the HL-LHC. The Demonstrator module equipped with the latest version of the on-detector electronics was built and inserted into the ATLAS experiment. The Demonstrator module is operated and read out using a Tile PreProcessor (TilePPr) Demonstrator which enables backward compatibility with the present ATLAS Trigger and Data AcQuisition (TDAQ), and the timing, trigger, and command (TTC) systems. This article describes in detail the main hardware and firmware components of the clock distribution and data acquisition systems for the Demonstrator module, focusing on the TilePPr Demonstrator.
|
|
|
Herrero, V., Toledo, J., Catala, J. M., Esteve, R., Gil, A., Lorca, D., et al. (2012). Readout electronics for the SiPM tracking plane in the NEXT-1 prototype. Nucl. Instrum. Methods Phys. Res. A, 695, 229–232.
Abstract: NEXT is a new experiment to search for neutrinoless double beta decay using a 100 kg radio-pure high-pressure gaseous xenon TPC with electroluminescence readout. A large-scale prototype with a SiPM tracking plane has been built. The primary electron paths can be reconstructed from time-resolved measurements of the light that arrives to the SiPM plane. Our approach is to measure how many photons have reached each SiPM sensor each microsecond with a gated integrator. We have designed and tested a 16-channel front-end board that includes the analog paths and a digital section. Each analog path consists of three different stages: a transimpedance amplifier, a gated integrator and an offset and gain control stage. Measurements show good linearity and the ability to detect single photoelectrons.
|
|