|
NEXT Collaboration(Jones, B. J. P. et al), Carcel, S., Carrion, J. V., Diaz, J., Martin-Albo, J., Martinez, A., et al. (2022). The dynamics of ions on phased radio-frequency carpets in high pressure gases and application for barium tagging in xenon gas time projection chambers. Nucl. Instrum. Methods Phys. Res. A, 1039, 167000–19pp.
Abstract: Radio-frequency (RF) carpets with ultra-fine pitches are examined for ion transport in gases at atmospheric pressures and above. We develop new analytic and computational methods for modeling RF ion transport at densities where dynamics are strongly influenced by buffer gas collisions. An analytic description of levitating and sweeping forces from phased arrays is obtained, then thermodynamic and kinetic principles are used to calculate ion loss rates in the presence of collisions. This methodology is validated against detailed microscopic SIMION simulations. We then explore a parameter space of special interest for neutrinoless double beta decay experiments: transport of barium ions in xenon at pressures from 1 to 10 bar. Our computations account for molecular ion formation and pressure dependent mobility as well as finite temperature effects. We discuss the challenges associated with achieving suitable operating conditions, which lie beyond the capabilities of existing devices, using presently available or near-future manufacturing techniques.
|
|
|
NEXT Collaboration(Kekic, M. et al), Benlloch-Rodriguez, J. M., Carcel, S., Carrion, J. V., Diaz, J., Felkai, R., et al. (2021). Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment. J. High Energy Phys., 01(1), 189–22pp.
Abstract: Convolutional neural networks (CNNs) are widely used state-of-the-art computer vision tools that are becoming increasingly popular in high-energy physics. In this paper, we attempt to understand the potential of CNNs for event classification in the NEXT experiment, which will search for neutrinoless double-beta decay in Xe-136. To do so, we demonstrate the usage of CNNs for the identification of electron-positron pair production events, which exhibit a topology similar to that of a neutrinoless double-beta decay event. These events were produced in the NEXT-White high-pressure xenon TPC using 2.6 MeV gamma rays from a Th-228 calibration source. We train a network on Monte Carlo-simulated events and show that, by applying on-the-fly data augmentation, the network can be made robust against differences between simulation and data. The use of CNNs offers significant improvement in signal efficiency and background rejection when compared to previous non-CNN-based analyses.
|
|
|
NEXT Collaboration(Lorca, D. et al), Martin-Albo, J., Laing, A., Ferrario, P., Gomez-Cadenas, J. J., Alvarez, V., et al. (2014). Characterisation of NEXT-DEMO using xenon K-alpha X-rays. J. Instrum., 9, P10007–20pp.
Abstract: The NEXT experiment aims to observe the neutrinoless double beta decay of Xe-136 in a high-pressure xenon gas TPC using electroluminescence (EL) to amplify the signal from ionization. Understanding the response of the detector is imperative in achieving a consistent and well understood energy measurement. The abundance of xenon K-shell X-ray emission during data taking has been identified as a multitool for the characterisation of the fundamental parameters of the gas as well as the equalisation of the response of the detector. The NEXT-DEMO prototype is a similar to 1.5 kg volume TPC filled with natural xenon. It employs an array of 19 PMTs as an energy plane and of 256 SiPMs as a tracking plane with the TPC light tube and SiPM surfaces being coated with tetraphenyl butadiene (TPB) which acts as a wavelength shifter for the VUV scintillation light produced by xenon. This paper presents the measurement of the properties of the drift of electrons in the TPC, the effects of the EL production region, and the extraction of position dependent correction constants using K-alpha X-ray deposits. These constants were used to equalise the response of the detector to deposits left by gammas from Na-22.
|
|
|
NEXT Collaboration(Martin-Albo, J. et al), Muñoz Vidal, J., Ferrario, P., Nebot-Guinot, M., Gomez-Cadenas, J. J., Alvarez, V., et al. (2016). Sensitivity of NEXT-100 to neutrinoless double beta decay. J. High Energy Phys., 05(5), 159–30pp.
Abstract: NEXT-100 is an electroluminescent high-pressure xenon gas time projection chamber that will search for the neutrinoless double beta (0v beta beta) decay of Xe-136. The detector possesses two features of great value for 0v beta beta searches: energy resolution better than 1% FWHM at the Q value of Xe-136 and track reconstruction for the discrimination of signal and background events. This combination results in excellent sensitivity, as discussed in this paper. Material-screening measurements and a detailed Monte Carlo detector simulation predict a background rate for NEXT-100 of at most 4 x 10(-4) counts keV(-1) kg(-1) yr(-1). Accordingly, the detector will reach a sensitivity to the 0v beta beta-decay half-life of 2.8 x 10(25) years (90% CL) for an exposure of 100 kg.year, or 6.0 x 10(25) years after a run of 3 effective years.
|
|
|
NEXT Collaboration(Martinez-Lema, G. et al), Benlloch-Rodriguez, J. M., Carcel, S., Carrion, J. V., Diaz, J., Felkai, R., et al. (2021). Sensitivity of the NEXT experiment to Xe-124 double electron capture. J. High Energy Phys., 02(2), 203–25pp.
Abstract: Double electron capture by proton-rich nuclei is a second-order nuclear process analogous to double beta decay. Despite their similarities, the decay signature is quite different, potentially providing a new channel to measure the hypothesized neutrinoless mode of these decays. The Standard-Model-allowed two-neutrino double electron capture (2 nu EC EC) has been predicted for a number of isotopes, but only observed in Kr-78, Ba-130 and, recently, Xe-124. The sensitivity to this decay establishes a benchmark for the ultimate experimental goal, namely the potential to discover also the lepton-number-violating neutrinoless version of this process, 0 nu EC EC. Here we report on the current sensitivity of the NEXT-White detector to Xe-124 2 nu EC EC and on the extrapolation to NEXT-100. Using simulated data for the 2 nu EC EC signal and real data from NEXT-White operated with Xe-124-depleted gas as background, we define an optimal event selection that maximizes the NEXT-White sensitivity. We estimate that, for NEXT-100 operated with xenon gas isotopically enriched with 1 kg of Xe-124 and for a 5-year run, a sensitivity to the 2 nu EC EC half-life of 6 x 10(22) y (at 90% confidence level) or better can be reached.
|
|
|
NEXT Collaboration(Martinez-Lema, G. et al), Palmeiro, B., Botas, A., Laing, A., Renner, J., Simon, A., et al. (2018). Calibration of the NEXT-White detector using Kr-83m decays. J. Instrum., 13, P10014–21pp.
Abstract: The NEXT-White (NEW) detector is currently the largest radio-pure high-pressure xenon gas time projection chamber with electroluminescent readout in the world. It has been operating at Laboratorio Subterraneo de Canfranc (LSC) since October 2016. This paper describes the calibrations performed using Kr-83m decays during a long run taken from March to November 2017 (Run II). Krypton calibrations are used to correct for the finite drift-electron lifetime as well as for the dependence of the measured energy on the event transverse position which is caused by variations in solid angle coverage both for direct and reflected light and edge effects. After producing calibration maps to correct for both effects we measure an excellent energy resolution for 41.5 keV point-like deposits of (4.553 +/- 0.010 (stat.) +/- 0.324 (sys.)) % FWHM in the full chamber and (3.804 +/- 0.013 (stat.) +/- 0.112 (sys.)) % FWHM in a restricted fiducial volume. Using naive 1/root E scaling, these values translate into resolutions of (0.5916 +/- 0.0014 (stat.) +/- 0.0421 (sys.)) % FWHM and (0.4943 +/- 0.0017 (stat.) +/- 0.0146 (sys.)) % FWHM at the Q(beta beta) energy of xenon double beta decay (2458 keV), well within range of our target value of 1%.
|
|
|
NEXT Collaboration(McDonald, A. D. et al), Alvarez, V., Benlloch-Rodriguez, J. M., Botas, A., Carcel, S., Carrion, J. V., et al. (2018). Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging. Phys. Rev. Lett., 120(13), 132504–6pp.
Abstract: A new method to tag the barium daughter in the double-beta decay of Xe-136 is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba++) resolution at a transparent scanning surface is demonstrated. A single-step photobleach confirms the single ion interpretation. Individual ions are localized with superresolution (similar to 2 nm), and detected with a statistical significance of 12.9 sigma over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double-beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.
|
|
|
NEXT Collaboration(McDonald, A. D. et al), Alvarez, V., Benlloch-Rodriguez, J. M., Carcel, S., Carrion, J. V., Diaz, J., et al. (2019). Electron drift and longitudinal diffusion in high pressure xenon-helium gas mixtures. J. Instrum., 14, P08009–19pp.
Abstract: We report new measurements of the drift velocity and longitudinal diffusion coefficients of electrons in pure xenon gas and in xenon-helium gas mixtures at 1-9 bar and electric field strengths of 50-300 V/cm. In pure xenon we find excellent agreement with world data at all E/P, for both drift velocity and diffusion coefficients. However, a larger value of the longitudinal diffusion coefficient than theoretical predictions is found at low E/P in pure xenon, below the range of reduced fields usually probed by TPC experiments. A similar effect is observed in xenon-helium gas mixtures at somewhat larger E/P. Drift velocities in xenon-helium mixtures are found to be theoretically well predicted. Although longitudinal diffusion in xenon-helium mixtures is found to be larger than anticipated, extrapolation based on the measured longitudinal diffusion coefficients suggest that the use of helium additives to reduce transverse diffusion in xenon gas remains a promising prospect.
|
|
|
NEXT Collaboration(Monrabal, F. et al), Laing, A., Alvarez, V., Benlloch-Rodriguez, J. M., Carcel, S., Carrion, J. V., et al. (2018). The NEXT White (NEW) detector. J. Instrum., 13, P12010–38pp.
Abstract: Conceived to host 5 kg of xenon at a pressure of 15 bar in the fiducial volume, the NEXT-White apparatus is currently the largest high pressure xenon gas TPC using electroluminescent amplification in the world. It is also a 1:2 scale model of the NEXT-100 detector for Xe-136 beta beta 0 nu decay searches, scheduled to start operations in 2019. Both detectors measure the energy of the event using a plane of photomultipliers located behind a transparent cathode. They can also reconstruct the trajectories of charged tracks in the dense gas of the TPC with the help of a plane of silicon photomultipliers located behind the anode. A sophisticated gas system, common to both detectors, allows the high gas purity needed to guarantee a long electron lifetime. NEXT-White has been operating since October 2016 at the Laboratorio Subterraneo de Canfranc (LSC), in Spain. This paper describes the detector and associated infrastructures, as well as the main aspects of its initial operation.
|
|
|
NEXT Collaboration(Novella, P. et al), Carcel, S., Carrion, J. V., Diaz, J., Martin-Albo, J., Martinez, A., et al. (2022). Measurement of the Xe-136 two-neutrino double-beta-decay half-life via direct background subtraction in NEXT. Phys. Rev. C, 105(5), 055501–8pp.
Abstract: We report a measurement of the half-life of the Xe-136 two-neutrino double-beta decay performed with a novel direct-background-subtraction technique. The analysis relies on the data collected with the NEXT-White detector operated with Xe-136-enriched and Xe-136-depleted xenon, as well as on the topology of double-electron tracks. With a fiducial mass of only 3.5 kg of Xe, a half-life of 2.34(-0.46)(+0.80) (stat)(-0.17)(+0.30) (sys) x 10(21) yr is derived from the background-subtracted energy spectrum. The presented technique demonstrates the feasibility of unique background-model-independent neutrinoless double-beta-decay searches.
|
|