toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gonzalez-Iglesias, D.; Aksoy, A.; Esperante, D.; Gimeno, B.; Latina, A.; Boronat, M.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J. doi  openurl
  Title X-band RF photoinjector design for the CompactLight project Type Journal Article
  Year 2021 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 1014 Issue Pages 165709 - 10pp  
  Keywords Photoinjector; X-band; Electron sources; Free electron laser; Beam generation  
  Abstract RF photoinjectors have been under development for several decades to provide the high-brightness electron beams required for X-ray Free Electron Lasers. This paper proposes a photoinjector design that meets the Horizon 2020 CompactLight design study requirements. It consists of a 5.6-cell, X-band (12 GHz) RF gun, an emittance-compensating solenoid and two X-band traveling-wave structures that accelerate the beam out of the space-charge-dominated regime. The RF gun is intended to operate with a cathode gradient of 200 MV/m, and the TW structures at a gradient of 65 MV/m. The shape of the gun cavity cells was optimized to reduce the peak electric surface field. An assessment of the gun RF breakdown likelihood is presented as is a multipacting analysis for the gun coaxial coupler. RF pulse heating on the gun inner surfaces is also evaluated and beam dynamics simulations of the 100 MeV photoinjector are summarized.  
  Address [Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Boronat, M.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.] Univ Valencia Consejo Super Invest Cient, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: daniel.gonzalez-iglesias@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000704382900005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4983  
Permanent link to this record
 

 
Author Ahyoune, S. et al; Gimeno, B.; Reina-Valero, J. url  doi
openurl 
  Title A Proposal for a Low-Frequency Axion Search in the 1-2 μeV Range and Below with the BabyIAXO Magnet Type Journal Article
  Year 2023 Publication Annalen der Physik Abbreviated Journal Ann. Phys.  
  Volume (down) 535 Issue 12 Pages 2300326 - 23pp  
  Keywords axions; dark matter; dark photons; haloscopes; IAXO  
  Abstract In the near future BabyIAXO will be the most powerful axion helioscope, relying on a custom-made magnet of two bores of 70 cm diameter and 10 m long, with a total available magnetic volume of more than 7 m(3). In this document, it proposes and describe the implementation of low-frequency axion haloscope setups suitable for operation inside the BabyIAXO magnet. The RADES proposal has a potential sensitivity to the axion-photon coupling g(alpha gamma) down to values corresponding to the KSVZ model, in the (currently unexplored) mass range between 1 and 2 μeV, after a total effective exposure of 440 days. This mass range is covered by the use of four differently dimensioned 5-meter-long cavities, equipped with a tuning mechanism based on inner turning plates. A setup like the one proposed will also allow an exploration of the same mass range for hidden photons coupled to photons. An additional complementary apparatus is proposed using LC circuits and exploring the low energy range (approximate to 10(-4)-10(-1)mu eV). The setup includes a cryostat and cooling system to cool down the BabyIAXO bore down to about 5 K, as well as an appropriate low-noise signal amplification and detection chain.  
  Address [Ahyoune, Saiyd; Cuendis, Sergio Arguedas; Miralda-Escude, Jordi] Univ Barcelona, Inst Ciencies Cosmos, Barcelona 08028, Spain, Email: cogollos@mpp.mpg.de  
  Corporate Author Thesis  
  Publisher Wiley-V C H Verlag Gmbh Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-3804 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001095932700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5833  
Permanent link to this record
 

 
Author Martin-Luna, P.; Esperante, D.; Prieto, A.F.; Fuster-Martinez, N.; Rivas, I.G.; Gimeno, B.; Ginestar, D.; Gonzalez-Iglesias, D.; Hueso, J.L.; Llosa, G.; Martinez-Reviriego, P.; Meneses-Felipe, A.; Riera, J.; Regueiro, P.V.; Hueso-Gonzalez, F. doi  openurl
  Title Simulation of electron transport and secondary emission in a photomultiplier tube and validation Type Journal Article
  Year 2024 Publication Sensors and Actuators A-Physical Abbreviated Journal Sens. Actuator A-Phys.  
  Volume (down) 365 Issue Pages 114859 - 10pp  
  Keywords Photomultiplier tube; Photodetector; Proton therapy; Monte Carlo simulation; Measurement  
  Abstract The electron amplification and transport within a photomultiplier tube (PMT) has been investigated by developing an in-house Monte Carlo simulation code. The secondary electron emission in the dynodes is implemented via an effective electron model and the Modified Vaughan's model, whereas the transport is computed with the Boris leapfrog algorithm. The PMT gain, rise time and transit time have been studied as a function of supply voltage and external magnetostatic field. A good agreement with experimental measurements using a Hamamatsu R13408-100 PMT was obtained. The simulations have been conducted following different treatments of the underlying geometry: three-dimensional, two-dimensional and intermediate (2.5D). The validity of these approaches is compared. The developed framework will help in understanding the behavior of PMTs under highly intense and irregular illumination or varying external magnetic fields, as in the case of prompt gamma-ray measurements during pencil-beam proton therapy; and aid in optimizing the design of voltage dividers with behavioral circuit models.  
  Address [Martin-Luna, Pablo; Esperante, Daniel; Fuster-Martinez, Nuria; Gimeno, Benito; Gonzalez-Iglesias, Daniel; Llosa, Gabriela; Martinez-Reviriego, Pablo; Meneses-Felipe, Alba; Hueso-Gonzalez, Fernando] CSIC UV, Inst Fis Corpuscular IFIC, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: pablo.martin@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0924-4247 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001131902700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5876  
Permanent link to this record
 

 
Author Mostajeran, M.; Sorolla, E.; Rakova, E.; Gimeno, B. doi  openurl
  Title Space charge and two-sheet model in multipactor Type Journal Article
  Year 2024 Publication European Physical Journal Plus Abbreviated Journal Eur. Phys. J. Plus  
  Volume (down) 139 Issue 3 Pages 256 - 13pp  
  Keywords  
  Abstract The electron cloud populated by a multipactor within two emissive parallel plates was modeled by two thin sheets of charge, and for the first time the equations of the particle motion for this two-sheet system were derived taking into account space charge effects. The electron population growth in multipacting process was then simulated with the code developed on the base of these equations. It was found that the mutual repulsion between the sheets, i.e., space charge effects, results in the increasing of charge in one of the sheets and the loss of charge in the other due to the different growth rates. This process eventually comes to the saturation of one sheet and the dissappearence of the other.  
  Address [Mostajeran, M.] Yazd Univ, Fac Phys, POB 89195-741, Yazd, Iran, Email: mostajeran@yazd.ac.ir;  
  Corporate Author Thesis  
  Publisher Springer Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-5444 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001184318100005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6014  
Permanent link to this record
 

 
Author Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.; Alesini, D. doi  openurl
  Title Analysis of the Multipactor Effect in an RF Electron Gun Photoinjector Type Journal Article
  Year 2023 Publication IEEE Transactions on Electron Devices Abbreviated Journal IEEE Trans. Electron Devices  
  Volume (down) 70 Issue 1 Pages 288-295  
  Keywords Magnetic tunneling; Multipactor effect; photoinjector; RF breakdown; RF gun  
  Abstract The objective of this work is the evaluation of the risk of suffering a multipactor discharge within an RF electron gun photoinjector. Photoinjectors are a type of source for intense electron beams, which are the main electron source for synchrotron light sources, such as free-electron lasers. The analyzed device consists of 1.6 cells and it has been designed to operate at the S-band. Besides, around the RF gun there is an emittance compensation solenoid, whose magnetic field prevents the growth of the electron beam emittance, and thus the degradation of the properties of the beam. The multipactor analysis is based on a set of numerical simulations by tracking the trajectories of the electron cloud in the cells of the device. To reach this aim, an in-house multipactor code was developed. Specifically, two different cases were explored: with the emittance compensation solenoid assumed to be off and with the emittance compensation solenoid in operation. For both the cases, multipactor simulations were carried out exploring different RF electric field amplitudes. Moreover, for a better understanding of the multipactor phenomenon, the resonant trajectories of the electrons and the growth rate of the electrons population are investigated.  
  Address [Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Paterna 46980, Spain, Email: Daniel.Gonzalez-Iglesias@uv.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9383 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000890813600001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5427  
Permanent link to this record
 

 
Author Monerris-Belda, O.; Cervera Marin, R.; Rodriguez Jodar, M.; Diaz-Caballero, E.; Alcaide Guillen, C.; Petit, J.; Boria, V.E.; Gimeno, B.; Raboso, D. doi  openurl
  Title High Power RF Discharge Detection Technique Based on the In-Phase and Quadrature Signals Type Journal Article
  Year 2021 Publication IEEE Transactions on Microwave Theory and Techniques Abbreviated Journal IEEE Trans. Microw. Theory Tech.  
  Volume (down) 69 Issue 12 Pages 5429-5438  
  Keywords Radio frequency; Microwave theory and techniques; Electric breakdown; Discharges (electric); Noise measurement; Sensitivity; RF signals; Corona; microwave devices; multipactor; radio frequency (RF) breakdown; RF high power  
  Abstract High power radio frequency (RF) breakdown testing is a subject of great relevance in the space industry, due to the increasing need of higher transmission power and smaller devices. This work presents a novel RF breakdown detection system, which monitors the same parameters as the microwave nulling system but with several advantages. Where microwave nulling-a de facto standard in RF breakdown testing-is narrowband and requires continuous tuning to keep its sensitivity, the proposed technique is broadband and maintains its performance for any RF signal. On top of that, defining the detection threshold is cumbersome due to the lack of an international standardized criterion. Small responses may appear in the detection system during the test and, sometimes, it is not possible to determine if these are an actual RF breakdown or random noise. This new detection system uses a larger analysis bandwidth, thus reducing the cases in which a small response is difficult to be classified. The proposed detection method represents a major step forward in high power testing as it runs without human intervention, warning the operator or decreasing the RF power automatically much faster than any human operator.  
  Address [Monerris-Belda, Oscar; Cervera Marin, Raul; Rodriguez Jodar, Miguel; Petit, John] Val Space Consortium, Valencia 46022, Spain, Email: oscar.monerris@val-space.com  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000725804500027 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5042  
Permanent link to this record
 

 
Author Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Boronat, M.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J. doi  openurl
  Title Analytical RF Pulse Heating Analysis for High Gradient Accelerating Structures Type Journal Article
  Year 2021 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume (down) 68 Issue 2 Pages 78-91  
  Keywords RF accelerating structures; RF pulse heating; thermal analysis  
  Abstract The main aim of this work is to present a simple method, based on analytical expressions, for obtaining the temperature increase due to the Joule effect inside the metallic walls of an RF accelerating component. This technique relies on solving the 1-D heat-transfer equation for a thick wall, considering that the heat sources inside the wall are the ohmic losses produced by the RF electromagnetic fields penetrating the metal with finite electrical conductivity. Furthermore, it is discussed how the theoretical expressions of this method can be applied to obtain an approximation to the temperature increase in realistic 3-D RF accelerating structures, taking as an example the cavity of an RF electron photoinjector and a traveling wave linac cavity. These theoretical results have been benchmarked with numerical simulations carried out with commercial finite-element method (FEM) software, finding good agreement among them. Besides, the advantage of the analytical method with respect to the numerical simulations is evidenced. In particular, the model could be very useful during the design and optimization phase of RF accelerating structures, where many different combinations of parameters must be analyzed in order to obtain the proper working point of the device, allowing to save time and speed up the process. However, it must be mentioned that the method described in this article is intended to provide a quick approximation to the temperature increase in the device, which of course is not as accurate as the proper 3-D numerical simulations of the component.  
  Address [Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Boronat, M.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.] UV, CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: daniel.gonzalez-iglesias@uv.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000619349900001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4720  
Permanent link to this record
 

 
Author Vague, J.; Melgarejo, J.C.; Boria, V.E.; Guglielmi, M.; Moreno, R.; Reglero, M.; Mata, R.; Montero, I.; Gonzalez-Iglesias, D.; Gimeno, B.; Gomez, A.; Vegas, A.; Raboso, D. doi  openurl
  Title Experimental Validation of Multipactor Effect for Ferrite Materials Used in L- and S-Band Nonreciprocal Microwave Components Type Journal Article
  Year 2019 Publication IEEE Transactions on Microwave Theory and Techniques Abbreviated Journal IEEE Trans. Microw. Theory Tech.  
  Volume (down) 67 Issue 6 Pages 2151-2161  
  Keywords Ferrites; ferromagnetic resonance; gadolinium-aluminum garnet; Holmium garnet; multipactor; space applications; wideband nonreciprocal devices  
  Abstract This paper reports on the experimental measurement of power threshold levels for the multipactor effect between samples of ferrite material typically used in the practical implementation of L-and S-band circulators and isolators. For this purposes, a new family of wideband, nonreciprocal rectangular waveguide structures loaded with ferrites has been designed with a full-wave electromagnetic simulation tool. The design also includes the required magnetostatic field biasing circuits. The multipactor breakdown power levels have also been predicted with an accurate electron tracking code using measured values for the secondary electron yield (SEY) coefficient. The measured results agree well with simulations, thereby fully validating the experimental campaign.  
  Address [Vague, Joaquin; Carlos Melgarejo, Juan; Boria, Vicente E.; Guglielmi, Marco; Reglero, Marta] Univ Politecn Valencia, iTEAM, Dept Comunicac, E-46022 Valencia, Spain, Email: jvague@dcom.upv.es;  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000470969100006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4056  
Permanent link to this record
 

 
Author Zhang, X.; Xiao, Y.T.; Gimeno, B. doi  openurl
  Title Multipactor Suppression by a Resonant Static Magnetic Field on a Dielectric Surface Type Journal Article
  Year 2020 Publication IEEE Transactions on Electron Devices Abbreviated Journal IEEE Trans. Electron Devices  
  Volume (down) 67 Issue 12 Pages 5723-5728  
  Keywords Radio frequency; Dielectrics; Magnetic resonance; Discharges (electric); Surface discharges; Surface waves; Electrostatics; Monte Carlo simulation; multipactor discharge; orthogonal waves; resonant static magnetic field; secondary electron yield  
  Abstract In this article, we study the suppression of the multipactor phenomenon on a dielectric surface by a resonant static magnetic field. A homemade Monte Carlo algorithm is developed for multipactor simulations on a dielectric surface driven by two orthogonal radio frequency (RF) electric field components. When the static magnetic field is perpendicular to the tangential and normal RF electric fields, it is shown that if the normal electric field lags the tangential electric field by pi/2, the superposition of the normal and tangential electric fields will trigger a gyro-acceleration of the electron cloud and restrain the multipactor discharge effectively. By contrast, when the normal electric field is in advance of the tangential electric field by pi/2, the difference between the normal and tangential electric fields drives gyro-motion of the electron cloud. Consequently, two enhanced discharge zones are inevitable. The suppression effects of the resonant static magnetic field that is parallel to the tangential RF electric field or to the normal RF electric field are also presented.  
  Address [Zhang, Xue; Xiao, Yuting] Xiangtan Univ, Sch Automat & Elect Informat, Xiangtan 411105, Hunan, Peoples R China, Email: zhangxue.iecas@yahoo.com;  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9383 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000594337700064 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4627  
Permanent link to this record
 

 
Author Zhang, X.; Chang, C.; Gimeno, B. doi  openurl
  Title Multipactor Analysis in Circular Waveguides Excited by TM01 Mode Type Journal Article
  Year 2019 Publication IEEE Transactions on Electron Devices Abbreviated Journal IEEE Trans. Electron Devices  
  Volume (down) 66 Issue 11 Pages 4943-4951  
  Keywords Circular waveguide; multipactor; ponderomotive force; TM01 mode  
  Abstract A series of detailed numerical simulations are used to investigate the properties ofmultipactor breakdown in circularwaveguidespropagating the TM01 mode. AMonte Carlo model is constructed to track the motion of the electrons, study the multipactor scenarios, and predict the multipactor thresholds. The theoretical and numerical analyses indicate that the product of the frequency and the gap (f . D) affects both the intensity of the ponderomotive force and its spatial distribution, which results from the nonuniformity of the radio frequency (RF) field and significantly influences the electrons' trajectoriesandmultipactor trends. The decrease in f . D results in a remarkable enhancement in the magnitude of the ponderomotive force, while the maximal intensity gradually moves toward the half radius R/2 area. Low values of f . D correspond to high ponderomotive potential, which sustains the short-range electrons and triggers the single-sidedmultipactor. In contrast, high values of f . D correspond to low ponderomotive potential, contributing to long-range electrons and exciting the double-sided multipactor. Fitting to the susceptibility diagram produces the border line and a modified f . D threshold of (f . D) th approximate to 338.4 GHz mm, which separates the susceptibility diagram into single-sided, double-sided, andmixed-sided zones. The initial electron energy influences their trajectories at high f . D and low RF power. This effect tends to dominate the multipactor behavior in the mixed-sided region.  
  Address [Zhang, Xue] Xiangtan Univ, Coll Informat Engn, Xiangtan 411105, Hunan, Peoples R China, Email: zhangxue.iecas@yahoo.com;  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9383 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000494419900066 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4191  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva