|   | 
Details
   web
Records
Author Vague, J.; Melgarejo, J.C.; Boria, V.E.; Guglielmi, M.; Moreno, R.; Reglero, M.; Mata, R.; Montero, I.; Gonzalez-Iglesias, D.; Gimeno, B.; Gomez, A.; Vegas, A.; Raboso, D.
Title (down) Experimental Validation of Multipactor Effect for Ferrite Materials Used in L- and S-Band Nonreciprocal Microwave Components Type Journal Article
Year 2019 Publication IEEE Transactions on Microwave Theory and Techniques Abbreviated Journal IEEE Trans. Microw. Theory Tech.
Volume 67 Issue 6 Pages 2151-2161
Keywords Ferrites; ferromagnetic resonance; gadolinium-aluminum garnet; Holmium garnet; multipactor; space applications; wideband nonreciprocal devices
Abstract This paper reports on the experimental measurement of power threshold levels for the multipactor effect between samples of ferrite material typically used in the practical implementation of L-and S-band circulators and isolators. For this purposes, a new family of wideband, nonreciprocal rectangular waveguide structures loaded with ferrites has been designed with a full-wave electromagnetic simulation tool. The design also includes the required magnetostatic field biasing circuits. The multipactor breakdown power levels have also been predicted with an accurate electron tracking code using measured values for the secondary electron yield (SEY) coefficient. The measured results agree well with simulations, thereby fully validating the experimental campaign.
Address [Vague, Joaquin; Carlos Melgarejo, Juan; Boria, Vicente E.; Guglielmi, Marco; Reglero, Marta] Univ Politecn Valencia, iTEAM, Dept Comunicac, E-46022 Valencia, Spain, Email: jvague@dcom.upv.es;
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9480 ISBN Medium
Area Expedition Conference
Notes WOS:000470969100006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4056
Permanent link to this record
 

 
Author Berenguer, A.; Coves, A.; Gimeno, B.; Bronchalo, E.; Boria, V.E.
Title (down) Experimental Study of the Multipactor Effect in a Partially Dielectric-Loaded Rectangular Waveguide Type Journal Article
Year 2019 Publication IEEE Microwave and Wireless Components Letters Abbreviated Journal IEEE Microw. Wirel. Compon. Lett.
Volume 29 Issue 9 Pages 595-597
Keywords Dielectric; multipactor effect; rectangular waveguide; RF breakdown; Secondary Electron Yield (SEY); waveguide transformer
Abstract This letter presents the experimental study of the multipactor threshold in a partially dielectric-loaded rectangular waveguide, whose results validate a multipactor model recently developed by the authors, which includes the charge distribution appearing on the dielectric surface during the multipactor discharge. First, the variation of the multipactor RF voltage threshold has been theoretically analyzed in different waveguide configurations: in an empty waveguide, and also in the cases of a one-sided and two-sided dielectric-loaded waveguides. To reach this aim, an in-house Monte Carlo simulation tool has been developed. The Secondary Electron Yield (SEY) of the metallic and dielectric materials used in the numerical simulations have been measured experimentally. Finally, an aluminum WR-75 symmetric E-plane rectangular waveguide transformer has been designed and fabricated, in which several multipaction tests have been carried out to validate the in-house software tool, demonstrating an excellent agreement between the simulation results and the experimental data.
Address [Berenguer, Andres; Coves, Angela; Bronchalo, Enrique] Univ Miguel Hernandez Elche, Dept Commun Engn, Elche 03202, Spain, Email: angela.coves@umh.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1531-1309 ISBN Medium
Area Expedition Conference
Notes WOS:000489754400009 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4170
Permanent link to this record
 

 
Author Garcia-Barcelo, J.M.; Diaz-Morcillo, A.; Gimeno, B.
Title (down) Enhancing resonant circular-section haloscopes for dark matter axion detection: approaches and limitations in volume expansion Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 159 - 30pp
Keywords Axions and ALPs; Particle Nature of Dark Matter
Abstract Haloscopes, microwave resonant cavities utilized in detecting dark matter axions within powerful static magnetic fields, are pivotal in modern astrophysical research. This paper delves into the realm of cylindrical geometries, investigating techniques to augment volume and enhance compatibility with dipole or solenoid magnets. The study explores volume constraints in two categories of haloscope designs: those reliant on single cavities and those employing multicavities. In both categories, strategies to increase the expanse of elongated structures are elucidated. For multicavities, the optimization of space within magnets is explored through 1D configurations. Three subcavity stacking approaches are investigated, while the foray into 2D and 3D geometries lays the groundwork for future topological developments. The results underscore the efficacy of these methods, revealing substantial room for progress in cylindrical haloscope design. Notably, an elongated single cavity design attains a three-order magnitude increase in volume compared to a WC-109 standard waveguide-based single cavity. Diverse prototypes featuring single cavities, 1D, 2D, and 3D multicavities highlight the feasibility of leveraging these geometries to magnify the volume of tangible haloscope implementations.
Address [Garcia-Barcelo, J. M.] Werner Heisenberg Inst, Max Planck Inst Phys, Fohringer Ring 6, D-80805 Munich, Germany, Email: jmgarcia@mpp.mpg.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001111979900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5870
Permanent link to this record
 

 
Author Martinez-Reviriego, P.; Esperante, D.; Grudiev, A.; Gimeno, B.; Blanch, C.; Gonzalez-Iglesias, D.; Fuster-Martinez, N.; Martin-Luna, P.; Martinez, E.; Menendez, A.; Fuster, J.
Title (down) Dielectric assist accelerating structures for compact linear accelerators of low energy particles in hadrontherapy treatments Type Journal Article
Year 2024 Publication Frontiers in Physics Abbreviated Journal Front. Physics
Volume 12 Issue Pages 1345237 - 12pp
Keywords dielectric assist accelerating (DAA) structures; radio frequency (RF); LINAC; hadrontherapy; standing wave
Abstract Dielectric Assist Accelerating (DAA) structures based on ultralow-loss ceramic are being studied as an alternative to conventional disk-loaded copper cavities. This accelerating structure consists of dielectric disks with irises arranged periodically in metallic structures working under the TM02-pi mode. In this paper, the numerical design of an S-band DAA structure for low beta particles, such as protons or carbon ions used for Hadrontherapy treatments, is shown. Four dielectric materials with different permittivity and loss tangent are studied as well as different particle velocities. Through optimization, a design that concentrates most of the RF power in the vacuum space near the beam axis is obtained, leading to a significant reduction of power loss on the metallic walls. This allows to fabricate cavities with an extremely high quality factor, over 100,000, and shunt impedance over 300 M omega/m at room temperature. During the numerical study, the design optimization has been improved by adjusting some of the cell parameters in order to both increase the shunt impedance and reduce the peak electric field in certain locations of the cavity, which can lead to instabilities in its normal functioning.
Address [Martinez-Reviriego, Pablo; Esperante, Daniel; Gimeno, Benito; Blanch, Cesar; Gonzalez-Iglesias, Daniel; Fuster-Martinez, Nuria; Martin-Luna, Pablo; Martinez, Eduardo; Menendez, Abraham; Fuster, Juan] CSIC Univ Valencia, Inst Fis Corpuscular IFIC, Paterna, Spain, Email: pablo.martinez.reviriego@ific.uv.es
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:001162373700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5953
Permanent link to this record
 

 
Author Diaz-Morcillo, A.; Barcelo, J.M.G.; Guerrero, A.J.L.; Navarro, P.; Gimeno, B.; Cuneáis, S.A.; Melcon, A.A.; Cogollos, C.; Calatroni, S.; Dobrich, B.; Gallego-Puyol, J.D.; Golm, J.; Irastorza, I.G.; Malbrunot, C.; Miralda-Escude, J.; Garay, C.P.; Redondo, J.; Wuensch, W.
Title (down) Design of New Resonant Haloscopes in the Search for the Dark Matter Axion: A Review of the First Steps in the RADES Collaboration Type Journal Article
Year 2022 Publication Universe Abbreviated Journal Universe
Volume 8 Issue 1 Pages 5 - 22pp
Keywords axions; dark matter detectors; haloscopes; resonant cavities
Abstract With the increasing interest in dark matter axion detection through haloscopes, in which different international groups are currently involved, the RADES group was established in 2016 with the goal of developing very sensitive detection systems to be operated in dipole magnets. This review deals with the work developed by this collaboration during its first five years: from the first designs-based on the multi-cavity concept, aiming to increase the haloscope volume, and thereby improve sensitivity-to their evolution, data acquisition design, and finally, the first experimental run. Moreover, the envisaged work within RADES for both dipole and solenoid magnets in the short and medium term is also presented.
Address [Diaz-Morcillo, Alejandro; Garcia Barcelo, Jose Maria; Lozano Guerrero, Antonio Jose; Navarro, Pablo; Alvarez Melcon, Alejandro] Univ Politecn Cartagena, Dept Informat & Commun Technol, Cartagena 30202, Spain, Email: alejandro.diaz@upct.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000746970600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5086
Permanent link to this record
 

 
Author Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Boronat, M.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.
Title (down) Analytical RF Pulse Heating Analysis for High Gradient Accelerating Structures Type Journal Article
Year 2021 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 68 Issue 2 Pages 78-91
Keywords RF accelerating structures; RF pulse heating; thermal analysis
Abstract The main aim of this work is to present a simple method, based on analytical expressions, for obtaining the temperature increase due to the Joule effect inside the metallic walls of an RF accelerating component. This technique relies on solving the 1-D heat-transfer equation for a thick wall, considering that the heat sources inside the wall are the ohmic losses produced by the RF electromagnetic fields penetrating the metal with finite electrical conductivity. Furthermore, it is discussed how the theoretical expressions of this method can be applied to obtain an approximation to the temperature increase in realistic 3-D RF accelerating structures, taking as an example the cavity of an RF electron photoinjector and a traveling wave linac cavity. These theoretical results have been benchmarked with numerical simulations carried out with commercial finite-element method (FEM) software, finding good agreement among them. Besides, the advantage of the analytical method with respect to the numerical simulations is evidenced. In particular, the model could be very useful during the design and optimization phase of RF accelerating structures, where many different combinations of parameters must be analyzed in order to obtain the proper working point of the device, allowing to save time and speed up the process. However, it must be mentioned that the method described in this article is intended to provide a quick approximation to the temperature increase in the device, which of course is not as accurate as the proper 3-D numerical simulations of the component.
Address [Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Boronat, M.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.] UV, CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: daniel.gonzalez-iglesias@uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000619349900001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4720
Permanent link to this record
 

 
Author Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.; Alesini, D.
Title (down) Analysis of the Multipactor Effect in an RF Electron Gun Photoinjector Type Journal Article
Year 2023 Publication IEEE Transactions on Electron Devices Abbreviated Journal IEEE Trans. Electron Devices
Volume 70 Issue 1 Pages 288-295
Keywords Magnetic tunneling; Multipactor effect; photoinjector; RF breakdown; RF gun
Abstract The objective of this work is the evaluation of the risk of suffering a multipactor discharge within an RF electron gun photoinjector. Photoinjectors are a type of source for intense electron beams, which are the main electron source for synchrotron light sources, such as free-electron lasers. The analyzed device consists of 1.6 cells and it has been designed to operate at the S-band. Besides, around the RF gun there is an emittance compensation solenoid, whose magnetic field prevents the growth of the electron beam emittance, and thus the degradation of the properties of the beam. The multipactor analysis is based on a set of numerical simulations by tracking the trajectories of the electron cloud in the cells of the device. To reach this aim, an in-house multipactor code was developed. Specifically, two different cases were explored: with the emittance compensation solenoid assumed to be off and with the emittance compensation solenoid in operation. For both the cases, multipactor simulations were carried out exploring different RF electric field amplitudes. Moreover, for a better understanding of the multipactor phenomenon, the resonant trajectories of the electrons and the growth rate of the electrons population are investigated.
Address [Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Paterna 46980, Spain, Email: Daniel.Gonzalez-Iglesias@uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9383 ISBN Medium
Area Expedition Conference
Notes WOS:000890813600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5427
Permanent link to this record
 

 
Author Ahyoune, S. et al; Gimeno, B.; Reina-Valero, J.
Title (down) A Proposal for a Low-Frequency Axion Search in the 1-2 μeV Range and Below with the BabyIAXO Magnet Type Journal Article
Year 2023 Publication Annalen der Physik Abbreviated Journal Ann. Phys.
Volume 535 Issue 12 Pages 2300326 - 23pp
Keywords axions; dark matter; dark photons; haloscopes; IAXO
Abstract In the near future BabyIAXO will be the most powerful axion helioscope, relying on a custom-made magnet of two bores of 70 cm diameter and 10 m long, with a total available magnetic volume of more than 7 m(3). In this document, it proposes and describe the implementation of low-frequency axion haloscope setups suitable for operation inside the BabyIAXO magnet. The RADES proposal has a potential sensitivity to the axion-photon coupling g(alpha gamma) down to values corresponding to the KSVZ model, in the (currently unexplored) mass range between 1 and 2 μeV, after a total effective exposure of 440 days. This mass range is covered by the use of four differently dimensioned 5-meter-long cavities, equipped with a tuning mechanism based on inner turning plates. A setup like the one proposed will also allow an exploration of the same mass range for hidden photons coupled to photons. An additional complementary apparatus is proposed using LC circuits and exploring the low energy range (approximate to 10(-4)-10(-1)mu eV). The setup includes a cryostat and cooling system to cool down the BabyIAXO bore down to about 5 K, as well as an appropriate low-noise signal amplification and detection chain.
Address [Ahyoune, Saiyd; Cuendis, Sergio Arguedas; Miralda-Escude, Jordi] Univ Barcelona, Inst Ciencies Cosmos, Barcelona 08028, Spain, Email: cogollos@mpp.mpg.de
Corporate Author Thesis
Publisher Wiley-V C H Verlag Gmbh Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-3804 ISBN Medium
Area Expedition Conference
Notes WOS:001095932700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5833
Permanent link to this record