|   | 
Details
   web
Records
Author Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.; Alesini, D.
Title (up) Analysis of the Multipactor Effect in an RF Electron Gun Photoinjector Type Journal Article
Year 2023 Publication IEEE Transactions on Electron Devices Abbreviated Journal IEEE Trans. Electron Devices
Volume 70 Issue 1 Pages 288-295
Keywords Magnetic tunneling; Multipactor effect; photoinjector; RF breakdown; RF gun
Abstract The objective of this work is the evaluation of the risk of suffering a multipactor discharge within an RF electron gun photoinjector. Photoinjectors are a type of source for intense electron beams, which are the main electron source for synchrotron light sources, such as free-electron lasers. The analyzed device consists of 1.6 cells and it has been designed to operate at the S-band. Besides, around the RF gun there is an emittance compensation solenoid, whose magnetic field prevents the growth of the electron beam emittance, and thus the degradation of the properties of the beam. The multipactor analysis is based on a set of numerical simulations by tracking the trajectories of the electron cloud in the cells of the device. To reach this aim, an in-house multipactor code was developed. Specifically, two different cases were explored: with the emittance compensation solenoid assumed to be off and with the emittance compensation solenoid in operation. For both the cases, multipactor simulations were carried out exploring different RF electric field amplitudes. Moreover, for a better understanding of the multipactor phenomenon, the resonant trajectories of the electrons and the growth rate of the electrons population are investigated.
Address [Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Paterna 46980, Spain, Email: Daniel.Gonzalez-Iglesias@uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9383 ISBN Medium
Area Expedition Conference
Notes WOS:000890813600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5427
Permanent link to this record
 

 
Author Bayar, M.; Ikeno, N.; Oset, E.
Title (up) Analysis of the psi (4040) and psi (4160) decay into D-(*()) (D)over-bar(()*()), D-s(()*()) (D)over-bar(s)(()*()) Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 3 Pages 222 - 9pp
Keywords
Abstract We have performed an analysis of the e+e--> D(*) data in the region of the psi(4040) and psi(4160) resonances which have a substantial overlap and require special care. By using the P-3(0) model to relate the different D(*)(D) over bar(*) production modes, we make predictions for production of these channels and compare with experiment and other theoretical approaches. As a side effect we find that these resonances qualify largely as c (c) over bar states and theweight of the meson-meson components in the wave function is very small.
Address [Bayar, M.] Kocaeli Univ, Dept Phys, TR-41380 Izmit, Turkey, Email: melahat.bayar@kocaeli.edu.tr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000519818100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4328
Permanent link to this record
 

 
Author Miyagawa, P.S. et al; Bernabeu, P.; Lacasta, C.; Solaz, C.; Soldevila, U.
Title (up) Analysis of the results from Quality Control tests performed on ATLAS18 Strip Sensors during on-going production Type Journal Article
Year 2024 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1064 Issue Pages 169457 - 9pp
Keywords HL-LHC; ATLAS; ITk; Strip sensors
Abstract The ATLAS experiment will replace its existing Inner Detector with the new all -silicon Inner Tracker (ITk) to cope with the operating conditions of the forthcoming high -luminosity phase of the LHC (HL-LHC). The outer regions of the ITk will be instrumented with similar to 18000 ATLAS18 strip sensors fabricated by Hamamatsu Photonics K.K. (HPK). With the launch of full-scale sensor production in 2021, the ITk strip sensor community has undertaken quality control (QC) testing of these sensors to ensure compliance with mechanical and electrical specifications agreed with HPK. The testing is conducted at seven QC sites on each of the monthly deliveries of similar to 500 sensors. This contribution will give an overview of the QC procedures and analysis; the tests most likely to determine pass/fail for a sensor are IV, long-term leakage current stability, full strip test and visual inspection. The contribution will then present trends in the results and properties following completion of similar to 60% of production testing. It will also mention challenges overcome through collaborative efforts with HPK during the early phases of production. With less than 5% of sensors rejected by QC testing, the overall production quality has been very good.
Address [Miyagawa, P. S.; Beck, G. A.; Bevan, A. J.; Chen, Z.; Dawson, I.; Zenz, S. C.] Queen Mary Univ London, Particle Phys Res Ctr, GO Jones Bldg, Mile End Rd, London E14NS, England, Email: paul.miyagawa@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001249611300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6158
Permanent link to this record
 

 
Author Ramalho, M.; Suhonen, J.; Kostensalo, J.; Alcala, G.A.; Algora, A.; Fallot, M.; Porta, A.; Zakari-Issoufou, A.A.
Title (up) Analysis of the total beta-electron spectrum of( 92)Rb: Implications for the reactor flux anomalies Type Journal Article
Year 2022 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 106 Issue 2 Pages 024315 - 7pp
Keywords
Abstract We present here a microscopic nuclear-structure calculation of a beta-electron spectrum including all the beta-decay branches of a high Q-value reactor fission product contributing significantly to the reactor antineutrino energy spectrum. We perform large-scale nuclear shell-model calculations of the total electron spectrum for the beta(-) decay of Rb-92 to states in Sr-92 using a computer cluster. We exploit the beta-branching data of a recent total absorption gamma-ray spectroscopy (TAGS) measurement to determine the effective values of the weak axial-vector coupling, g(A), and the weak axial charge, g(A)(gamma(5)). By using the TAGS data we avoid the bias stemming from the pandemonium effect which is a systematic error biasing the usual beta-decay measurements. We take fully into account all the involved allowed and forbidden beta transitions, in particular the first-forbidden nonunique ones which have earlier been shown to be relevant in the context of the reactor-antineutrino flux anomaly and the unexplained spectral shoulder, the “bump,” the former one having been interpreted as one of the strongest evidence for the existence of sterile neutrinos. Here we are able to present quantitative evidence for the relevance of forbidden nonunique beta(-) decays in a total beta spectrum of a fission product, in this case( 92)Rb, which is one of the major contributors to the total reactor antineutrino spectral shape. We demonstrate that taking the forbidden spectral shapes fully into consideration leads for Rb-92 to a 2.6%-4.6% reduction in the expected inverse beta-decay rate at the reactor antineutrino telescopes. We also confirm by our calculation of a total beta-electron spectrum that the forbidden transitions can contribute to the formation of the spectral bump in the reactor-antineutrino flux profile.
Address [Ramalho, M.; Suhonen, J.] Univ Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland, Email: madeoliv@jyu.fi;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000889134200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5429
Permanent link to this record
 

 
Author Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Boronat, M.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.
Title (up) Analytical RF Pulse Heating Analysis for High Gradient Accelerating Structures Type Journal Article
Year 2021 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 68 Issue 2 Pages 78-91
Keywords RF accelerating structures; RF pulse heating; thermal analysis
Abstract The main aim of this work is to present a simple method, based on analytical expressions, for obtaining the temperature increase due to the Joule effect inside the metallic walls of an RF accelerating component. This technique relies on solving the 1-D heat-transfer equation for a thick wall, considering that the heat sources inside the wall are the ohmic losses produced by the RF electromagnetic fields penetrating the metal with finite electrical conductivity. Furthermore, it is discussed how the theoretical expressions of this method can be applied to obtain an approximation to the temperature increase in realistic 3-D RF accelerating structures, taking as an example the cavity of an RF electron photoinjector and a traveling wave linac cavity. These theoretical results have been benchmarked with numerical simulations carried out with commercial finite-element method (FEM) software, finding good agreement among them. Besides, the advantage of the analytical method with respect to the numerical simulations is evidenced. In particular, the model could be very useful during the design and optimization phase of RF accelerating structures, where many different combinations of parameters must be analyzed in order to obtain the proper working point of the device, allowing to save time and speed up the process. However, it must be mentioned that the method described in this article is intended to provide a quick approximation to the temperature increase in the device, which of course is not as accurate as the proper 3-D numerical simulations of the component.
Address [Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Boronat, M.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.] UV, CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: daniel.gonzalez-iglesias@uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000619349900001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4720
Permanent link to this record