|   | 
Details
   web
Records
Author NEXT Collaboration (Navarro, K.E. et al); Carcel, S.; Carrion, J.V.; Lopez, F.; Lopez-March, N.; Martin-Albo, J.; Muñoz Vidal, J.; Novella, P.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.
Title (up) A compact dication source for Ba2+ tagging and heavy metal ion sensor development Type Journal Article
Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 7 Pages P07044 - 19pp
Keywords Beam Optics; Heavy-ion detectors; Ion identification systems; Ion sources (positive ions; negative ions; electron cyclotron resonance (ECR); electron beam (EBIS))
Abstract We present a tunable metal ion beam that delivers controllable ion currents in the picoamp range for testing of dry-phase ion sensors. Ion beams are formed by sequential atomic evaporation and single or multiple electron impact ionization, followed by acceleration into a sensing region. Controllability of the ionic charge state is achieved through tuning of electrode potentials that influence the retention time in the ionization region. Barium, lead, and cadmium samples have been used to test the system, with ion currents identified and quantified using a quadrupole mass analyzer. Realization of a clean Ba2+ ion beam within a bench-top system represents an important technical advance toward the development and characterization of barium tagging systems for neutrinoless double beta decay searches in xenon gas. This system also provides a testbed for investigation of novel ion sensing methodologies for environmental assay applications, with dication beams of Pb2+ and Cd2+ also demonstrated for this purpose.
Address [Navarro, K. E.; Baeza-Rubio, J.; Giri, S.; Jones, B. J. P.; Nygren, D. R.; Samaniego, F. J.; Stogsdill, K.; Tiscareno, M. R.; Byrnes, N.; Dey, E.; Mistry, K.; Parmaksiz, I.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA, Email: karen.navarro@uta.edu
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001106703500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5860
Permanent link to this record
 

 
Author NEXT Collaboration (Cebrian, S. et al); Alvarez, V.; Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title (up) Accurate gamma and MeV-electron track reconstruction with an ultra-low diffusion Xenon/TMA TPC at 10 atm Type Journal Article
Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 804 Issue Pages 8-24
Keywords Double-beta decay; Gamma and electron detection; Microbulk micromegas; Time projection chamber; High pressure Xenon-Trimehylamine; Penning-Fluorescent mixtures
Abstract We report the performance of a 10 atm Xenon/trimethylamine time projection chamber (TPC) for the detection of X-rays (30 keV) and gamma-rays (0.511-1.275 MeV) in conjunction with the accurate tracking of the associated electrons. When operated at such a high pressure and in similar to 1%-admixtures, trimethylamine (TMA) endows Xenon with an extremely low electron diffusion (1.3 +/- 0.13 mm-sigma (longitudinal), 0.95 +/- 0.20 mm-sigma (transverse) along 1 m drift) besides forming a convenient Penning-Fluorescent' mixture. The TPC, that houses 1.1 kg of gas in its fiducial volume, operated continuously for 100 live-days in charge amplification mode. The readout was performed through the recently introduced microbulk Micromegas technology and the AFTER chip, providing a 3D voxelization of 8 mm x 8 mm x 1.2 mm for approximately 10 cm/MeV-long electron tracks. Resolution in energy (epsilon) at full width half maximum (R) inside the fiducial volume ranged from R = 14.6% (30 keV) to R = 4.6% (1.275 MeV). This work was developed as part of the R&D program of the NEXT collaboration for future detector upgrades in the search of the neutrino-less double beta decay (beta beta 0 nu) in Xe-136, specifically those based on novel gas mixtures. Therefore we ultimately focus on the calorimetric and topological properties of the reconstructed MeV-electron tracks. In particular, the obtained energy resolution has been decomposed in its various contributions and improvements towards achieving the R =1.4%root MeV/epsilon levels obtained in small sensors are discussed.
Address [Gonzalez-Diaz, Diego; Cebrian, S.; Dafni, T.; Herrera, D. C.; Irastorza, I. G.; Luzon, G.; Villar, J. A.; Aznarab, F.; Castel, J.; Garcia, J. A.; Gomez, H.; Iguaz, F. J.; Lagraba, A.; Rodriguez, A.; Ruiz-Choliz, E.; Segui, L.; Tomas, A.] Univ Zaragoza, Lab Fis Nucl & Astroparticulas, Zaragoza, Spain, Email: Diego.Gonzalez.Diaz@cern.ch;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000364133700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2442
Permanent link to this record
 

 
Author BABAR Collaboration (Lees, J.P. et al); Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.
Title (up) Amplitude analysis of B0 -> K+ pi- pi0 and evidence of direct CP violation in B -> K * pi decays Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 83 Issue 11 Pages 112010 - 21pp
Keywords
Abstract We analyze the decay B-0 -> K+ pi(-) pi(0) with a sample of 4.54 x 10(8) B (B) over bar events collected by the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC, and extract the complex amplitudes of seven interfering resonances over the Dalitz plot. These results are combined with amplitudes measured in B-0 -> K-S(0)pi(+)pi(-) decays to construct isospin amplitudes from B-0 -> K* pi and B-0 -> rho K decays. We measure the phase of the isospin amplitude Phi(3/2), useful in constraining the Cabibbo-Kobayashi-Maskawa unitarity triangle angle gamma and evaluate a CP rate asymmetry sum rule sensitive to the presence of new physics operators. We measure direct CP violation in B-0 -> K*(+) pi(-) decays at the level of 3 sigma when measurements from both B-0 -> K+ pi(-) pi(0) and B-0 -> K-S(0) pi(+) pi(-) decays are combined.
Address [Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, CNRS IN2P3, Lab Annecy Le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000292240300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 661
Permanent link to this record
 

 
Author NEXT Collaboration (Serra, L. et al); Sorel, M.; Alvarez, V.; Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Querol, M.; Renner, J.; Rodriguez, J.; Simon, A.; Yahlali, N.
Title (up) An improved measurement of electron-ion recombination in high-pressure xenon gas Type Journal Article
Year 2015 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 10 Issue Pages P03025 - 21pp
Keywords Charge transport, multiplication and electroluminescence in rare gases and liquids; Double-beta decay detectors; Time projection chambers; Ionization and excitation processes
Abstract We report on results obtained with the NEXT-DEMO prototype of the NEXT-100 high-pressure xenon gas time projection chamber (TPC), filled with pure xenon gas at 10 bar pressure and exposed to an alpha decay calibration source. Compared to our previous measurements with alpha particles, an upgraded detector and improved analysis techniques have been used. We measure event-by-event correlated fluctuations between ionization and scintillation due to electronion recombination in the gas, with correlation coefficients between -0.80 and -0.56 depending on the drift field conditions. By combining the two signals, we obtain a 2.8% FWHM energy resolution for 5.49 MeV alpha particles and a measurement of the optical gain of the electroluminescent TPC. The improved energy resolution also allows us to measure the specific activity of the radon in the gas due to natural impurities. Finally, we measure the average ratio of excited to ionized atoms produced in the xenon gas by alpha particles to be 0.561 +/- 0.045, translating into an average energy to produce a primary scintillation photon of W-ex = (39.2 +/- 3.2) eV.
Address [Serra, L.; Sorel, M.; Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gomez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Querol, M.; Renner, J.; Rodriguez, J.; Simon, A.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: luis.serra@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000357944500075 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2307
Permanent link to this record
 

 
Author BABAR Collaboration (del Amo Sanchez, P. et al); Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.
Title (up) Analysis of the D+ -> K- pi(+) e(+) nu(e) decay channel Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 83 Issue 7 Pages 072001 - 35pp
Keywords
Abstract Using 347: 5 fb(-1) of data recorded by the BABAR detector at the PEP-II electron-positron collider, 244 x 10(3) signal events for the D+ -> K- pi(+)e(+)nu(e) decay channel are analyzed. This decay mode is dominated by the (K) over bar*(892)(0) contribution. We determine the (K) over bar*(892)(0) parameters: m(K*(892)0) (895.4 +/- 0.2 +/- 0.2) MeV/c(2),Gamma(0)(K*(892)0) (46.5 +/- 0.3 +/- 0.2) MeV/c(2), and the Blatt-Weisskopf parameter r(BW) = 2.1 +/- 0.5 +/- 0.5 (GeV/c)(-1), where the first uncertainty comes from statistics and the second from systematic uncertainties. We also measure the parameters defining the corresponding hadronic form factors at q(2) = 0 (r(V) = V(0)/A(1)(0) = 1.463 +/- 0.031, r(2) = A(2)(0)/A(1)(0) = 0.801 +/- 0.020 +/- 0.020) and the value of the axial-vector pole mass parametrizing the q(2) variation of A(1) and A(2): m(A) (2.63 +/- 0.10 +/- 0.13) GeV/c(2). The S-wave fraction is equal to (5.79 +/- 0.16 +/- 0: 15)%. Other signal components correspond to fractions below 1%. Using the D+ -> K-pi(+)pi(+) channel as a normalization, we measure the D+ semileptonic branching fraction: B(D+ K-pi(+)e(+)nu(e)) (4.00 +/- 0: 03 +/- 0.04 +/- 0.09) x 10(-2), where the third uncertainty comes from external inputs. We then obtain the value of the hadronic form factor A(1) at q(2) 0: A(1)(0) 0.6200 +/- 0.0056 +/- 0.0065 +/- 0.0071. Fixing the P-wave parameters, we measure the phase of the S wave for several values of the K pi mass. These results confirm those obtained with K pi production at small momentum transfer in fixed target experiments.
Address [Sanchez, P. del Amo; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, Lab Annecy le Vieux Phys Particules LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000289055500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 592
Permanent link to this record
 

 
Author NEXT Collaboration (Simon, A. et al); Gomez-Cadenas, J. J.; Alvarez, V.; Benlloch-Rodriguez, J. M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Ferrario, P.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Rodriguez, J.; Sorel, M.; Torrent, J.; Yahlali, N.
Title (up) Application and performance of an ML-EM algorithm in NEXT Type Journal Article
Year 2017 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 12 Issue Pages P08009 - 22pp
Keywords Gaseous imaging and tracking detectors; Image reconstruction in medical imaging; Time projection Chambers (TPC); Medical-image reconstruction methods and algorithms; computer-aided software
Abstract The goal of the NEXT experiment is the observation of neutrinoless double beta decay in Xe-136 using a gaseous xenon TPC with electroluminescent amplification and specialized photodetector arrays for calorimetry and tracking. The NEXT Collaboration is exploring a number of reconstruction algorithms to exploit the full potential of the detector. This paper describes one of them: the Maximum Likelihood Expectation Maximization (ML-EM) method, a generic iterative algorithm to find maximum-likelihood estimates of parameters that has been applied to solve many different types of complex inverse problems. In particular, we discuss a bi-dimensional version of the method in which the photosensor signals integrated over time are used to reconstruct a transverse projection of the event. First results show that, when applied to detector simulation data, the algorithm achieves nearly optimal energy resolution (better than 0.5% FWHM at the Q value of 136Xe) for events distributed over the full active volume of the TPC.
Address [Simon, A.; Gomez-Cadenas, J. J.; Alvarez, V.; Benlloch-Rodriguez, J. M.; Botas, A.; Carcel, S.; Carrion, J. V.; Diaz, J.; Felkai, R.; Ferrario, P.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Munoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Rodriguez, J.; Sorel, M.; Torrent, J.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: ander.simon@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000414159500009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3358
Permanent link to this record
 

 
Author BABAR Collaboration (del Amo Sanchez, P. et al); Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D.A.; Oyanguren, A.
Title (up) B-meson decays to eta ' rho, eta ' f(0), and eta ' K* Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 82 Issue 1 Pages 011502 - 8pp
Keywords
Abstract We present measurements of B-meson decays to the final states eta'rho, eta'f(0), and eta'K*, where K* stands for a vector, scalar, or tensor strange meson. We observe a significant signal or evidence for eta'rho(+) and all the eta'K* channels. We also measure, where applicable, the charge asymmetries, finding results consistent with no direct CP violation in all cases. The measurements are performed on a data sample consisting of 467 X 10(6) B (B) over bar pairs, collected with the BABAR detector at the PEP-II e(+)e(-) collider at the SLAC National Accelerator Laboratory. Our results favor the theoretical predictions from perturbative QCD and QCD factorization and we observe an enhancement of the tensor K-2*(1430) with respect to the vector K*(892) component.
Address [Sanchez, P. del Amo; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, Lab Annecy Le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000280475500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 404
Permanent link to this record
 

 
Author NEXT Collaboration (Renner, J. et al); Benlloch-Rodriguez, J.; Botas, A.; Ferrario, P.; Gomez-Cadenas, J.J.; Alvarez, V.; Carcel, S.; Carrion, J.V.; Cervera-Villanueva, A.; Diaz, J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martinez, A.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Querol, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title (up) Background rejection in NEXT using deep neural networks Type Journal Article
Year 2017 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 12 Issue Pages T01004 - 21pp
Keywords Analysis and statistical methods; Pattern recognition; cluster finding; calibration and fitting methods; Double-beta decay detectors; Time projection chambers
Abstract We investigate the potential of using deep learning techniques to reject background events in searches for neutrinoless double beta decay with high pressure xenon time projection chambers capable of detailed track reconstruction. The differences in the topological signatures of background and signal events can be learned by deep neural networks via training over many thousands of events. These networks can then be used to classify further events as signal or background, providing an additional background rejection factor at an acceptable loss of efficiency. The networks trained in this study performed better than previous methods developed based on the use of the same topological signatures by a factor of 1.2 to 1.6, and there is potential for further improvement.
Address [Renner, J.; Munoz Vidal, J.; Benlloch-Rodriguez, J. M.; Botas, A.; Ferrario, P.; Gomez-Cadenas, J. J.; Alvarez, V.; Carcel, S.; Carrion, J. V.; Cervera, A.; Diaz, J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martinez, A.; Monrabal, F.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Querol, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: jrenner@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000395770200004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2995
Permanent link to this record
 

 
Author NEXT Collaboration (Simon, A. et al); Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Martinez-Vara, M.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Renner, J.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title (up) Boosting background suppression in the NEXT experiment through Richardson-Lucy deconvolution Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 146 - 38pp
Keywords Dark Matter and Double Beta Decay (experiments)
Abstract Next-generation neutrinoless double beta decay experiments aim for half-life sensitivities of similar to 10(27) yr, requiring suppressing backgrounds to < 1 count/tonne/yr. For this, any extra background rejection handle, beyond excellent energy resolution and the use of extremely radiopure materials, is of utmost importance. The NEXT experiment exploits differences in the spatial ionization patterns of double beta decay and single-electron events to discriminate signal from background. While the former display two Bragg peak dense ionization regions at the opposite ends of the track, the latter typically have only one such feature. Thus, comparing the energies at the track extremes provides an additional rejection tool. The unique combination of the topology-based background discrimination and excellent energy resolution (1% FWHM at the Q-value of the decay) is the distinguishing feature of NEXT. Previous studies demonstrated a topological background rejection factor of <similar to> 5 when reconstructing electron-positron pairs in the Tl-208 1.6 MeV double escape peak (with Compton events as background), recorded in the NEXT-White demonstrator at the Laboratorio Subterraneo de Canfranc, with 72% signal efficiency. This was recently improved through the use of a deep convolutional neural network to yield a background rejection factor of similar to 10 with 65% signal efficiency. Here, we present a new reconstruction method, based on the Richardson-Lucy deconvolution algorithm, which allows reversing the blurring induced by electron diffusion and electroluminescence light production in the NEXT TPC. The new method yields highly refined 3D images of reconstructed events, and, as a result, significantly improves the topological background discrimination. When applied to real-data 1.6 MeV e(-)e(+) pairs, it leads to a background rejection factor of 27 at 57% signal efficiency.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA, Email: ander@post.bgu.ac.il;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000677621700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4906
Permanent link to this record
 

 
Author NEXT Collaboration (Martinez-Lema, G. et al); Palmeiro, B.; Botas, A.; Laing, A.; Renner, J.; Simon, A.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Kekic, M.; Lopez-March, N.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Perez, J.; Querol, M.; Rodriguez, J.; Romo-Lugue, C.; Sorel, M.; Torrent, J.; Yahlali, N.
Title (up) Calibration of the NEXT-White detector using Kr-83m decays Type Journal Article
Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 13 Issue Pages P10014 - 21pp
Keywords Charge transport; multiplication and electroluminescence in rare gases and liquids; Gaseous imaging and tracking detectors; Time projection Chambers (TPC); Double-beta decay detectors
Abstract The NEXT-White (NEW) detector is currently the largest radio-pure high-pressure xenon gas time projection chamber with electroluminescent readout in the world. It has been operating at Laboratorio Subterraneo de Canfranc (LSC) since October 2016. This paper describes the calibrations performed using Kr-83m decays during a long run taken from March to November 2017 (Run II). Krypton calibrations are used to correct for the finite drift-electron lifetime as well as for the dependence of the measured energy on the event transverse position which is caused by variations in solid angle coverage both for direct and reflected light and edge effects. After producing calibration maps to correct for both effects we measure an excellent energy resolution for 41.5 keV point-like deposits of (4.553 +/- 0.010 (stat.) +/- 0.324 (sys.)) % FWHM in the full chamber and (3.804 +/- 0.013 (stat.) +/- 0.112 (sys.)) % FWHM in a restricted fiducial volume. Using naive 1/root E scaling, these values translate into resolutions of (0.5916 +/- 0.0014 (stat.) +/- 0.0421 (sys.)) % FWHM and (0.4943 +/- 0.0017 (stat.) +/- 0.0146 (sys.)) % FWHM at the Q(beta beta) energy of xenon double beta decay (2458 keV), well within range of our target value of 1%.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: gonzalo.martinez.lema@usc.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000447061800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3754
Permanent link to this record