IFIC Literature Database
Home
|
Show All
|
Simple Search
|
Advanced Search
Login
Quick Search:
Field:
main fields
author
title
publication
keywords
abstract
contains:
...
1-1 of 1 record found matching your query:
Search & Display Options
Search within Results:
Field:
author
title
year
keywords
abstract
type
publication
abbrev_journal
volume
issue
pages
thesis
publisher
place
editor
series_title
language
area
notes
call_number
serial
contribution_id
ISI Publication
International Colaboration
contains:
...
Exclude matches
Display Options:
Field:
all fields
keywords & abstract
additional fields
records per page
Select All
Deselect All
<<
1
>>
List View
|
Citations
|
Details
Record
Links
Author
NEXT Collaboration (Renner, J. et al)
;
Benlloch-Rodriguez, J.
;
Botas, A.
;
Ferrario, P.
;
Gomez-Cadenas, J.J.
;
Alvarez, V.
;
Carcel, S.
;
Carrion, J.V.
;
Cervera-Villanueva, A.
;
Diaz, J.
;
Laing, A.
;
Liubarsky, I.
;
Lopez-March, N.
;
Lorca, D.
;
Martinez, A.
;
Monrabal, F.
;
Muñoz Vidal, J.
;
Nebot-Guinot, M.
;
Novella, P.
;
Palmeiro, B.
;
Querol, M.
;
Rodriguez, J.
;
Serra, L.
;
Simon, A.
;
Sorel, M.
;
Yahlali, N.
Title
Background rejection in NEXT using deep neural networks
Type
Journal Article
Year
2017
Publication
Journal of Instrumentation
Abbreviated Journal
J. Instrum.
Volume
12
Issue
Pages
T01004 - 21pp
Keywords
Analysis and statistical methods
;
Pattern recognition
;
cluster finding
;
calibration and fitting methods
;
Double-beta decay detectors
;
Time projection chambers
Abstract
We investigate the potential of using deep learning techniques to reject background events in searches for neutrinoless double beta decay with high pressure xenon time projection chambers capable of detailed track reconstruction. The differences in the topological signatures of background and signal events can be learned by deep neural networks via training over many thousands of events. These networks can then be used to classify further events as signal or background, providing an additional background rejection factor at an acceptable loss of efficiency. The networks trained in this study performed better than previous methods developed based on the use of the same topological signatures by a factor of 1.2 to 1.6, and there is potential for further improvement.
Address
[Renner, J.; Munoz Vidal, J.; Benlloch-Rodriguez, J. M.; Botas, A.; Ferrario, P.; Gomez-Cadenas, J. J.; Alvarez, V.; Carcel, S.; Carrion, J. V.; Cervera, A.; Diaz, J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martinez, A.; Monrabal, F.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Querol, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: jrenner@ific.uv.es
Corporate Author
Thesis
Publisher
Iop Publishing Ltd
Place of Publication
Editor
Language
English
Summary Language
Original Title
Series Editor
Series Title
Abbreviated Series Title
Series Volume
Series Issue
Edition
ISSN
1748-0221
ISBN
Medium
Area
Expedition
Conference
Notes
WOS:000395770200004
Approved
no
Is ISI
yes
International Collaboration
yes
Call Number
IFIC @ pastor @
Serial
2995
Permanent link to this record
Select All
Deselect All
<<
1
>>
List View
|
Citations
|
Details
Home
CQL Search
|
Library Search
|
Show Record
|
Extract Citations
Help