toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) NEXT Collaboration (Cebrian, S. et al); Alvarez, V.; Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N. url  doi
openurl 
  Title Accurate gamma and MeV-electron track reconstruction with an ultra-low diffusion Xenon/TMA TPC at 10 atm Type Journal Article
  Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 804 Issue Pages 8-24  
  Keywords Double-beta decay; Gamma and electron detection; Microbulk micromegas; Time projection chamber; High pressure Xenon-Trimehylamine; Penning-Fluorescent mixtures  
  Abstract We report the performance of a 10 atm Xenon/trimethylamine time projection chamber (TPC) for the detection of X-rays (30 keV) and gamma-rays (0.511-1.275 MeV) in conjunction with the accurate tracking of the associated electrons. When operated at such a high pressure and in similar to 1%-admixtures, trimethylamine (TMA) endows Xenon with an extremely low electron diffusion (1.3 +/- 0.13 mm-sigma (longitudinal), 0.95 +/- 0.20 mm-sigma (transverse) along 1 m drift) besides forming a convenient Penning-Fluorescent' mixture. The TPC, that houses 1.1 kg of gas in its fiducial volume, operated continuously for 100 live-days in charge amplification mode. The readout was performed through the recently introduced microbulk Micromegas technology and the AFTER chip, providing a 3D voxelization of 8 mm x 8 mm x 1.2 mm for approximately 10 cm/MeV-long electron tracks. Resolution in energy (epsilon) at full width half maximum (R) inside the fiducial volume ranged from R = 14.6% (30 keV) to R = 4.6% (1.275 MeV). This work was developed as part of the R&D program of the NEXT collaboration for future detector upgrades in the search of the neutrino-less double beta decay (beta beta 0 nu) in Xe-136, specifically those based on novel gas mixtures. Therefore we ultimately focus on the calorimetric and topological properties of the reconstructed MeV-electron tracks. In particular, the obtained energy resolution has been decomposed in its various contributions and improvements towards achieving the R =1.4%root MeV/epsilon levels obtained in small sensors are discussed.  
  Address [Gonzalez-Diaz, Diego; Cebrian, S.; Dafni, T.; Herrera, D. C.; Irastorza, I. G.; Luzon, G.; Villar, J. A.; Aznarab, F.; Castel, J.; Garcia, J. A.; Gomez, H.; Iguaz, F. J.; Lagraba, A.; Rodriguez, A.; Ruiz-Choliz, E.; Segui, L.; Tomas, A.] Univ Zaragoza, Lab Fis Nucl & Astroparticulas, Zaragoza, Spain, Email: Diego.Gonzalez.Diaz@cern.ch;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000364133700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2442  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva