toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Das, B. et al; Algora, A. doi  openurl
  Title Broken seniority symmetry in the semimagic proton mid-shell nucleus 95Rh Type Journal Article
  Year 2024 Publication Physical Review Research Abbreviated Journal Phys. Rev. Res.  
  Volume 6 Issue 2 Pages L022038 - 7pp  
  Keywords  
  Abstract Lifetime measurements of low-lying excited states in the semimagic ( N = 50) nucleus 95 Rh have been performed by means of the fast -timing technique. The experiment was carried out using gamma -ray detector arrays consisting of LaBr 3 (Ce) scintillators and germanium detectors integrated into the DESPEC experimental setup commissioned for the Facility for Antiproton and Ion Research ( FAIR ) Phase -0, Darmstadt, Germany. The excited states in 95 Rh were populated primarily via the /3 decays of 95 Pd nuclei, produced in the projectile fragmentation of a 850 MeV / nucleon 124 Xe beam impinging on a 4 g / cm 2 9 Be target. The deduced electromagnetic E2 transition strengths for the gamma -ray cascade within the multiplet structure depopulating from the isomeric I pi = 21 / 2 + state are found to exhibit strong deviations from predictions of standard shell model calculations which feature approximately conserved seniority symmetry. In particular, the observation of a strongly suppressed E2 strength for the 13 / 2 + -> 9 / 2 + ground state transition cannot be explained by calculations employing standard interactions. This remarkable result may require revision of the nucleon-nucleon interactions employed in state-of-the-art theoretical model calculations, and might also point to the need for including three-body forces in the Hamiltonian.  
  Address [Das, B.; Cederwall, B.; Qi, C.; Aktas, O.; Liotta, R.; Vasiljevic, J.] KTH Royal Inst Technol, S-10691 Stockholm, Sweden, Email: b.das@gsi.de;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001240855200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6147  
Permanent link to this record
 

 
Author Rossi, R.R.; Sanchez Garcia, G.; Tortola, M. url  doi
openurl 
  Title Probing nuclear properties and neutrino physics with current and future CEνNS experiments Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 9 Pages 095044 - 17pp  
  Keywords  
  Abstract The recent observation of coherent elastic neutrino-nucleus scattering (CEvNS) with neutrinos from pion decay at rest (N-DAR) sources by the COHERENT Collaboration has raised interest in this process in the search for new physics. Unfortunately, current uncertainties in the determination of nuclear parameters relevant to those processes can hide new physics effects. This is not the case for processes involving lower-energy neutrino sources such as nuclear reactors. Note, however, that a CEvNS measurement with reactor neutrinos depends largely on a (still-missing) precise determination of the quenching factor at very low energies, making its observation more challenging. In the upcoming years, once this signal is confirmed, a combined analysis of N-DAR and reactor CEvNS experiments will be very useful to probe particle and nuclear physics, with a reduced dependence on nuclear uncertainties. In this work, we explore this idea by simultaneously testing the sensitivity of current and future CEvNS experiments to neutrino nonstandard interactions (NSIs) and the neutron root mean square (rms) radius, considering different neutrino sources as well as several detection materials. We show how the interplay between future reactor and accelerator CEvNS experiments can help to get robust constraints on the neutron rms and to break degeneracies between the NSI parameters. Our forecast could be used as a guide to optimize the experimental sensitivity to the parameters under study.  
  Address [Rossi, R. R.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: gsanchez@ific.uv.es;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001238451900005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6149  
Permanent link to this record
 

 
Author Servant, G.; Simakachorn, P. url  doi
openurl 
  Title Ultrahigh frequency primordial gravitational waves beyond the kHz: The case of cosmic strings Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 10 Pages 103538 - 24pp  
  Keywords  
  Abstract We investigate gravitational -wave backgrounds (GWBs) of primordial origin that would manifest only at ultrahigh frequencies, from kilohertz to 100 gigahertz, and leave no signal at LIGO, the Einstein Telescope, the Cosmic Explorer, LISA, or pulsar -timing arrays. We focus on GWBs produced by cosmic strings and make predictions for the GW spectra scanning over high-energy scale (beyond 10 10 GeV) particle physics parameters. Signals from local string networks can easily be as large as the big bang nucleosynthesis/ cosmic microwave background bounds, with a characteristic strain as high as 10 – 26 in the 10 kHz band, offering prospects to probe grand unification physics in the 10 14 -10 17 GeV energy range. In comparison, GWB from axionic strings is suppressed (with maximal characteristic strain similar to 10 – 31 ) due to the early matter era induced by the associated heavy axions. We estimate the needed reach of hypothetical futuristic GW detectors to probe such GWB and, therefore, the corresponding high-energy physics processes. Beyond the information of the symmetry -breaking scale, the high -frequency spectrum encodes the microscopic structure of the strings through the position of the UV cutoffs associated with cusps and kinks, as well as potential information about friction forces on the string. The IR slope, on the other hand, reflects the physics responsible for the decay of the string network. We discuss possible strategies for reconstructing the scalar potential, particularly the scalar self -coupling, from the measurement of the UV cutoff of the GW spectrum.  
  Address [Servant, Geraldine] Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: peera.simakachorn@ific.uv.es;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001238459100006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6150  
Permanent link to this record
 

 
Author del Rio, A.; Ester, E.A. url  doi
openurl 
  Title Electrically charged black hole solutions in semiclassical gravity and dynamics of linear perturbations Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 10 Pages 105022 - 23pp  
  Keywords  
  Abstract We explore quantum corrections of electrically charged black holes subject to vacuum polarization effects of fermion fields in QED. Solving this problem exactly is challenging so we restrict to perturbative corrections that one can obtain using the heat kernel expansion in the one -loop effective action for electrons. Starting from the corrections originally computed by Drummond and Hathrell, we solve the full semiclassical Einstein -Maxwell system of coupled equations to leading order in Planck 's constant and find a new electrically charged, static black hole solution. To probe these quantum corrections, we study electromagnetic and gravitational (axial) perturbations on this background and derive the coupled system of Regge-Wheeler master equations that govern the propagation of these waves. In the classical limit, our results agree with previous findings in the literature. We finally compare these results with those that one can obtain by working out the Euler-Heisenberg effective action. We find again a new electrically charged static black hole spacetime and derive the coupled system of Regge-Wheeler equations governing the propagation of axial electromagnetic and gravitational perturbations. Results are qualitatively similar in both cases. We briefly discuss some challenges found in the numerical computation of the quasinormal mode frequency spectra when quantum corrections are included.  
  Address [del Rio, Adrian] Univ Valencia, Dept Fis Teor, CSIC, Dr Moliner 50, Burjassot 46100, Valencia, Spain, Email: adrian.rio@uv.es;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001239211500007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6151  
Permanent link to this record
 

 
Author Navarro, P.; Gimeno, B.; Monzo-Cabrera, J.; Diaz-Morcillo, A.; Blas, D. url  doi
openurl 
  Title Study of a cubic cavity resonator for gravitational waves detection in the microwave frequency range Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 10 Pages 104048 - 19pp  
  Keywords  
  Abstract The direct detection of gravitational waves (GWs) of frequencies above MHz has recently received considerable attention. In this work, we present a precise study of the reach of a cubic cavity resonator to GWs in the microwave range, using for the first time tools allowing to perform realistic simulations. Concretely, the boundary integral -resonant mode expansion (BI-RME) 3D method, which allows us to obtain not only the detected power but also the detected voltage (magnitude and phase), is used here. After analyzing three cubic cavities for different frequencies and working simultaneously with three different degenerate modes at each cavity, we conclude that the sensitivity of the experiment is strongly dependent on the polarization and incidence angle of the GW. The presented experiment can reach sensitivities up to 1 x 10 – 19 at 100 MHz, 2 x 10 – 20 at 1 GHz, and 6 x 10 – 19 at 10 GHz for optimal angles and polarizations, and where in all cases we assumed an integration time of Delta t 1 / 4 1 ms. These results provide a strong case for further developing the use of cavities to detect GWs. Moreover, the possibility of analyzing the detected voltage (magnitude and phase) opens a new interferometric detection scheme based on the combination of the detected signals from multiple cavities.  
  Address [Navarro, Pablo; Monzo-Cabrera, Juan; Diaz-Morcillo, Alejandro] Univ Politecn Cartagena, Dept Tecnol Informac & Comunicac, Plaza Hosp 1, Cartagena 30302, Spain, Email: pablonm.ct.94@gmail.com;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001239272400007 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6152  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanderswood, I. url  doi
openurl 
  Title Measurement of Ξc+ production in pPb collisions at √sNN=8.16 TeV at LHCb Type Journal Article
  Year 2024 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 109 Issue 4 Pages 044901 - 14pp  
  Keywords  
  Abstract A study of prompt Xi(+)(c) production in proton-lead collisions is performed with the LHCb experiment at a centerof-mass energy per nucleon pair of 8.16 TeV in 2016 in pPb and Pbp collisions with an estimated integrated luminosity of approximately 12.5 and 17.4 nb(-1), respectively. The Xi(+)(c) roduction cross section, as well as the Xi(+)(c) to Lambda(+)(c) production cross-section ratio, are measured as a function of the transverse momentum and rapidity and compared to the latest theory predictions. The forward-backward asymmetry is also measured as a function of the Xi(+)(c) ransverse momentum. The results provide strong constraints on theoretical calculation and are a unique input for hadronization studies in different collision systems.  
  Address [Baptista de Souza Leite, J.; Bediaga, I. B.; Cruz Torres, M.; De Freitas Carneiro Da Graca, U.; De Miranda, J. M.; dos Reis, A. C.; Falcao, L. N.; Gomes, A.; Massafferri, A.; Torres Machado, D.] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001202256800004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6155  
Permanent link to this record
 

 
Author Heidari, N.; Hassanabadi, H.; Araujo Filho, A.A.; Kriz, J.; Zare, S.; Porfirio, P.J. url  doi
openurl 
  Title Gravitational signatures of a non-commutative stable black hole Type Journal Article
  Year 2024 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 43 Issue Pages 101382 - 13pp  
  Keywords Non-commutativity; Black hole; Shadows; Geodesics  
  Abstract This work investigates several key aspects of a non-commutative theory with mass deformation. We calculate thermodynamic properties of the system and compare our results with recent literature. We examine the quasinormal modes of massless scalar perturbations using two approaches: the WKB approximation and the Poschl-Teller fitting method. Our results indicate that stronger non-commutative parameters lead to slower damping oscillations of gravitational waves and higher partial absorption cross sections. Furthermore, we study the geodesics of massless and massive particles, highlighting that the non-commutative parameter (R) significantly impacts the paths of light and event horizons. Also, we calculate the shadows, which show that larger values of (R) correspond to larger shadow radii, and provide some constraints on (R) applying the observation of Sgr A* from the Event Horizon Telescope. Finally, we explore the deflection angle in this context.  
  Address [Heidari, N.; Hassanabadi, H.] Shahrood Univ Technol, Fac Phys, Shahrood, Iran, Email: heidari.n@gmail.com;  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001126934800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5857  
Permanent link to this record
 

 
Author Gonzalez-Iglesias, D.; Gimeno, B.; Esperante, D.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster-Martinez, N.; Blanch, C.; Martinez, E.; Menendez, A.; Fuster, J.; Grudiev, A. url  doi
openurl 
  Title Non-resonant ultra-fast multipactor regime in dielectric-assist accelerating structures Type Journal Article
  Year 2024 Publication Results in Physics Abbreviated Journal Results Phys.  
  Volume 56 Issue Pages 107245 - 12pp  
  Keywords Multipactor; Dielectric accelerating structures; RF particle accelerators; Plasma discharge  
  Abstract The objective of this work is the evaluation of the risk of suffering a multipactor discharge in an S-band dielectric-assist accelerating (DAA) structure for a compact low-energy linear particle accelerator dedicated to hadrontherapy treatments. A DAA structure consists of ultra-low loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure, with the advantage of having an extremely high quality factor and very high shunt impedance at room temperature, and it is therefore proposed as a potential alternative to conventional disk-loaded copper structures. However, it has been observed that these structures suffer from multipactor discharges. In fact, multipactor is one of the main problems of these devices, as it limits the maximum accelerating gradient. Because of this, the analysis of multipactor risk in the early design steps of DAA cavities is crucial to ensure the correct performance of the device after fabrication. In this paper, we present a comprehensive and detailed study of multipactor in our DAA design through numerical simulations performed with an in-house developed code based on the Monte-Carlo method. The phenomenology of the multipactor (resonant electron trajectories, electron flight time between impacts, etc.) is described in detail for different values of the accelerating gradient. It has been found that in these structures an ultra-fast non-resonant multipactor appears, which is different from the types of multipactor theoretically studied in the scientific literature. In addition, the effect of several low electron emission coatings on the multipactor threshold is investigated. Furthermore, a novel design based on the modification of the DAA cell geometry for multipactor mitigation is introduced, which shows a significant increase in the accelerating gradient handling capabilities of our prototype.  
  Address [Gonzalez-Iglesias, Daniel; Gimeno, Benito; Esperante, Daniel; Martinez-Reviriego, Pablo; Martin-Luna, Pablo; Fuster-Martinez, Nuria; Blanch, Cesar; Martinez, Eduardo; Menendez, Abraham; Fuster, Juan] CSIC UV, Inst Fis Corpuscular IF, c Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: daniel.gonzalez-iglesias@uv.es  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-3797 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001133850600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5866  
Permanent link to this record
 

 
Author Becchetti, M.; Bonciani, R.; Cieri, L.; Coro, F.; Ripani, F. url  doi
openurl 
  Title Full top-quark mass dependence in diphoton production at NNLO in QCD Type Journal Article
  Year 2024 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 848 Issue Pages 138362 - 7pp  
  Keywords Collider phenomenology; Diphoton; Top quark; NNLO  
  Abstract In this paper we consider the diphoton production in hadronic collisions at the next-to-next-to-leading order (NNLO) in perturbative QCD, taking into account for the first time the full top quark mass dependence up to two loops (full NNLO). We show selected numerical distributions, highlighting the kinematic regions where the massive corrections are more significant. We make use of the recently computed two-loop massive amplitudes for diphoton production in the quark annihilation channel. The remaining massive contributions at NNLO are also considered, and we comment on the weight of the different types of contributions to the full and complete result.  
  Address [Becchetti, Matteo] Univ Torino, Dipartimento Fis, Via Pietro Giuria 1, I-10125 Turin, Italy, Email: matteo.becchetti@unito.it;  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001131862200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5873  
Permanent link to this record
 

 
Author Illana, A. et al; Perez-Vidal, R.M. doi  openurl
  Title Octupole correlations in the N = Z+2=56 110Xe nucleus Type Journal Article
  Year 2024 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 848 Issue Pages 138371 - 7pp  
  Keywords Octupole deformations; Xe-110; N = Z=56 region; Fusion evaporation reactions  
  Abstract This letter reports on the first observation of an octupole band in the neutron-deficient (N = Z + 2) nucleus Xe-110. The Xe-110 nuclei were produced via the Fe-54(Ni-58,2n) fusion-evaporation reaction. The emitted gamma rays were detected using the jurogam 3 gamma-ray spectrometer, while the fusion-evaporation residues were separated with the MARA separator at the Accelerator Laboratory of the University of Jyv & auml;skyl & auml;, Finland. The experimental observation of the low-lying 3(-) and 5(-) states and inter-band E1 transitions between the ground-state band and the octupole band proves the importance of octupole correlations in this region. These new experimental data combined with theoretical calculations using the symmetry-conserving configuration-mixing method, based on a Gogny energy density functional, have been interpreted as an evidence of enhanced octupole correlations in neutron-deficient xenon isotopes.  
  Address [Illana, A.; Auranen, K.; Beliuskina, O.; Delafosse, C.; Eronen, T.; Ge, Z.; Geldhof, S.; Gins, W.; Grahn, T.; Greenlees, P. T.; Joukainen, H.; Julin, R.; Jutila, H.; Kankainen, A.; Leino, M.; Louko, J.; Luoma, M.; Nesterenko, D.; Ojala, J.; Pakarinen, J.; Rahkila, P.; Ruotsalainen, P.; Sandzelius, M.; Saren, J.; Uusitalo, J.; Zimba, G. L.] Univ Jyvaskyla, Dept Phys, Accelerator Lab, POB 35, Jyvaskyla FI-40014, Finland, Email: andres.illana@ucm.es;  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001139401700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5880  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva