toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author AGATA Collaboration (Lalovic, N. et al); Gadea, A.; Domingo-Pardo, C. doi  openurl
  Title Study of isomeric states in Pb-198, Pb-200, Pb-202, Pb-206 and Hg-206 populated in fragmentation reactions Type Journal Article
  Year 2018 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 45 Issue 3 Pages 035105 - 27pp  
  Keywords (down) gamma-ray spectroscopy; relativistic projectile fragmentation; direct reactions; isomeric decays; electromagnetic transitions; nuclear shell model  
  Abstract Isomeric states in isotopes in the vicinity of doubly-magic Pb-208 were populated following reactions of a relativistic Pb-208 primary beam impinging on a Be-9 fragmentation target. Secondary beams of Pb-198,Pb-200,Pb-202,Pb-206 and Hg-206 were isotopically separated and implanted in a passive stopper positioned in the focal plane of the GSI Fragment Separator. Delayed gamma rays were detected with the Advanced Gamma Tracking Array (AGATA). Decay schemes were reevaluated and interpreted with shell-model calculations. The momentum-dependent population of isomeric states in the two-nucleon hole nuclei Pb-206/Hg-206 was found to differ from the population of multi neutron-hole isomeric states in Pb-198,Pb-200,Pb-202.  
  Address [Lalovic, N.; Rudolph, D.; Sarmiento, L. G.; Golubev, P.; Fahlander, C.; Gellanki, J.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden, Email: Natasa.Lalovic@nuclear.lu.se  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000424906600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3488  
Permanent link to this record
 

 
Author Domingo-Pardo, C. doi  openurl
  Title A new technique for 3D gamma-ray imaging: Conceptual study of a 3D camera Type Journal Article
  Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 675 Issue Pages 123-132  
  Keywords (down) Gamma-ray detector; Three dimensional gamma-ray imaging; Compton camera; Gamma camera  
  Abstract A novel technique for 3D gamma-ray imaging is presented. This method combines the positron annihilation Compton scattering imaging technique with a supplementary position sensitive detector, which registers gamma-rays scattered in the object at angles of about 90 degrees. The 3D coordinates of the scattering location can be determined rather accurately by applying the Compton principle. This method requires access to the object from two orthogonal sides and allows one to achieve a position resolution of few mm in all three space coordinates. A feasibility study for a 3D camera is presented based on Monte Carlo calculations.  
  Address Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: domingo@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000302973600019 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 989  
Permanent link to this record
 

 
Author Domingo-Pardo, C.; Goel, N.; Engert, T.; Gerl, J.; Kojouharov, I.; Schaffner, H.; Didierjean, F.; Duchene, G.; Sigward, M.H. doi  openurl
  Title A novel gamma-ray imaging method for the pulse-shape characterization of position sensitive semiconductor radiation detectors Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 643 Issue 1 Pages 79-88  
  Keywords (down) gamma-detector; Pulse shape analysis; Tracking; Semiconductor  
  Abstract A new technique for the pulse-shape characterization of gamma-ray position sensitive germanium detectors is presented. This method combines the pulse shape comparison scan (PSCS) principle with a gamma-ray imaging technique. The latter is provided by a supplementary, high performance, position sensitive gamma-ray scintillator detector. We describe the basic aspects of the method and we show measurements made for the study of pulse-shapes in a non-segmented planar HPGe detector. A preliminary application of the PSCS is carried out, although a more detailed investigation is being performed with highly segmented position sensitive detectors.  
  Address [Domingo-Pardo, C; Goel, N; Engert, T; Gerl, J; Kojouharov, I; Schaffner, H] GSI Helmholtzzentnim Schwenonenforsch mbH, D-64291 Darmstadt, Germany, Email: cesar.domingo@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000292442700014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 694  
Permanent link to this record
 

 
Author Hernandez-Prieto, A.; Quintana, B.; Martin, S.; Domingo-Pardo, C. doi  openurl
  Title Study of accuracy in the position determination with SALSA, a gamma-scanning system for the characterization of segmented HPGe detectors Type Journal Article
  Year 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 823 Issue Pages 98-106  
  Keywords (down) gamma-Camera; Virtual collimation; SAlamanca Lyso-based Scanning Array (SALSA); Segmented HPGe detectors  
  Abstract Accurate characterization of the electric response of segmented high-purity germanium (HPGe) detectors as a function of the interaction position is one of the current goals of the Nuclear Physics community seeking to perform gamma-ray tracking or even imaging with these detectors. For this purpose, scanning devices must be developed to achieve the signal-position association with the highest precision. With a view to studying the accuracy achieved with SALSA, the SAlamanca Lyso-based Scanning Array, here we report a detailed study on the uncertainty sources and their effect in the position determination inside the HPGe detector to be scanned. The optimization performed on the design of SALSA, aimed at minimizing the effect of the uncertainty sources, afforded an intrinsic uncertainty of 2 mm for large coaxial detectors and 1 mm for planar ones.  
  Address [Hernandez-Prieto, A.; Quintana, B.; Martin, S.] Univ Salamanca, Dept Fis Fundamental, Lab Radiac Ionizantes, C Espejo S-N, E-37008 Salamanca, Spain, Email: alvaro.prieto@usal.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000374661600014 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2664  
Permanent link to this record
 

 
Author Lerendegui-Marco, J.; Babiano-Suarez, V.; Balibrea-Correa, J.; Caballero, L.; Calvo, D.; Ladarescu, I.; Domingo-Pardo, C. url  doi
openurl 
  Title Simultaneous Gamma-Neutron Vision device: a portable and versatile tool for nuclear inspections Type Journal Article
  Year 2024 Publication EPJ Techniques and Instrumentation Abbreviated Journal EPJ Tech. Instrum.  
  Volume 11 Issue 1 Pages 2 - 17pp  
  Keywords (down) Gamma imaging; Neutron imaging; Nuclear inspections; Homeland security; Nuclear waste characterization  
  Abstract This work presents GN-Vision, a novel dual gamma-ray and neutron imaging system, which aims at simultaneously obtaining information about the spatial origin of gamma-ray and neutron sources. The proposed device is based on two position sensitive detection planes and exploits the Compton imaging technique for the imaging of gamma-rays. In addition, spatial distributions of slow- and thermal-neutron sources (<100 eV) are reconstructed by using a passive neutron pin-hole collimator attached to the first detection plane. The proposed gamma-neutron imaging device could be of prime interest for nuclear safety and security applications. The two main advantages of this imaging system are its high efficiency and portability, making it well suited for nuclear applications were compactness and real-time imaging is important. This work presents the working principle and conceptual design of the GN-Vision system and explores, on the basis of Monte Carlo simulations, its simultaneous gamma-ray and neutron detection and imaging capabilities for a realistic scenario where a Cf-252 source is hidden in a neutron moderating container.  
  Address [Lerendegui-Marco, Jorge; Babiano-Suarez, Victor; Balibrea-Correa, Javier; Caballero, Luis; Calvo, David; Ladarescu, Ion; Domingo-Pardo, Cesar] Univ Valencia, Inst Fis Corpuscular, CSIC, Valencia, Spain, Email: jorge.lerendegui@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2195-7045 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001171512700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5975  
Permanent link to this record
 

 
Author n_TOF Collaboration (Tarrio, D. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. doi  openurl
  Title Measurement of the angular distribution of fission fragments using a PPAC assembly at CERN n_TOF Type Journal Article
  Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 743 Issue Pages 79-85  
  Keywords (down) Fission; Neutron; Anisotropy; Angular distribution; Th-232; Gas detectors  
  Abstract A fission reaction chamber based on Parallel Plate Avalanche Counters (PPACs) was built for measuring angular distributions of fragments emitted in neutron-induced fission of actinides at the neutron beam available at the Neutron Time-Of-Flight (n_TOF) facility at CERN. The detectors and the samples were tilted 45 degrees with respect to the neutron beam direction to cover all the possible values of the emission angle of the fission fragments. The main features of this setup are discussed and results on the fission fragment angular distribution are provided for the Th-232(n,f) reaction around the fission threshold. The results are compared with the available data in the literature, demonstrating the good capabilities of this setup.  
  Address [Tarrio, D.; Duran, I.; Paradela, C.; Caamano, M.] Univ Santiago de Compostela, Santiago De Compostela, Spain, Email: dtarriov@gmail.com  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000334005000011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1746  
Permanent link to this record
 

 
Author n_TOF Collaboration (Bacak, M. et al); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title A compact fission detector for fission-tagging neutron capture experiments with radioactive fissile isotopes Type Journal Article
  Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 969 Issue Pages 163981 - 10pp  
  Keywords (down) Fission detector; U-233; n_TOF; Time-of-flight  
  Abstract In the measurement of neutron capture cross-sections of fissile isotopes, the fission channel is a source of background which can be removed efficiently using the so-called fission-tagging or fission-veto technique. For this purpose a new compact and fast fission chamber has been developed. The design criteria and technical description of the chamber are given within the context of a measurement of the U-233(n, gamma) cross-section at the nTOF facility at CERN, where it was coupled to the nTOF Total Absorption Calorimeter. For this measurement the fission detector was optimized for time resolution, minimization of material in the neutron beam and for alpha-fission discrimination. The performance of the fission chamber and its application as a fission tagging detector are discussed.  
  Address [Bacak, M.; Gunsing, F.; Vlachoudis, V.; Aberle, O.; Calviani, M.; Cardella, R.; Cerutti, F.; Chiaveri, E.; Ferrari, A.; Gilardoni, S.; Kadi, Y.; Macina, D.; Masi, A.; Mingrone, F.; Rubbia, C.; Sabate-Gilarte, M.; Zugec, P.] CERN, European Org Nucl Res, Geneva, Switzerland, Email: michael.bacak@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000536792400015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4413  
Permanent link to this record
 

 
Author AGATA Collaboration (Avigo, R. et al); Domingo-Pardo, C.; Gadea, A.; Gonzalez, V. doi  openurl
  Title Low-lying electric dipole gamma-continuum for the unstable Fe-62(,)64 nuclei: Strength evolution with neutron number Type Journal Article
  Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 811 Issue Pages 135951 - 6pp  
  Keywords (down) Fe-64; Fe-62; Nuclear structure; Dipole excitation around neutron threshold  
  Abstract The gamma-ray emission from the nuclei Fe-62,Fe-64 following Coulomb excitation at bombarding energy of 400-440 AMeV was measured with special focus on E1 transitions in the energy region 4-8 MeV. The unstable neutron-rich nuclei Fe-62,Fe-64 were produced at the FAIR-GSI laboratories and selected with the FRS spectrometer. The gamma decay was detected with AGATA. From the measured gamma-ray spectra the summed E1 strength is extracted and compared to microscopic quasi-particle phonon model calculations. The trend of the E1 strength with increasing neutron number is found to be fairly well reproduced with calculations that assume a rather complex structure of the 1(-) states (three-phonon states) inducing a strong fragmentation of the E1 nuclear response below the neutron binding energy.  
  Address [Avigo, R.; Wieland, O.; Bracco, A.; Camera, F.; Benzoni, G.; Blasi, N.; Bottoni, S.; Brambilla, S.; Crespi, F. C. L.; Leoni, S.; Million, B.; Morales, A., I; Pullia, A.; Riboldi, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy, Email: oliver.wieland@mi.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000612225400080 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4700  
Permanent link to this record
 

 
Author BRIKEN Collaboration (Tarifeño-Saldivia, A. et al); Tain, J.L.; Domingo-Pardo, C.; Agramunt, J.; Algora, A.; Morales, A.I.; Rubio, B.; Tolosa, A. url  doi
openurl 
  Title Conceptual design of a hybrid neutron-gamma detector for study of beta-delayed neutrons at the RIB facility of RIKEN Type Journal Article
  Year 2017 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 12 Issue Pages P04006 - 22pp  
  Keywords (down) Detector modelling and simulations I (interaction of radiation with matter, interaction; of photons with matter, interaction of hadrons with matter, etc); Instrumentation for radioactive beams (fragmentation devices; fragment and isotope, separators incl. ISOL; isobar separators; ion and atom traps; weak-beam diagnostics; radioactive-beam ion sources); Neutron detectors (cold, thermal, fast neutrons)  
  Abstract BRIKEN is a complex detection system to be installed at the RIB-facility of the RIKEN Nishina Center. It is aimed at the detection of heavy-ion implants, β-particles, γ-rays and β-delayed neutrons. The whole detection setup involves the Advanced Implantation Detection Array (AIDA), two HPGe Clover detectors and a large set of 166 counters of 3He embedded in a high-density polyethylene matrix. This article reports on a novel methodology developed for the conceptual design and optimisation of the 3He-tubes array, aiming at the best possible performance in terms of neutron detection. The algorithm is based on a geometric representation of two selected parameters of merit, namely, average neutron detection efficiency and efficiency flatness, as a function of a reduced number of geometric variables. The response of the detection system itself, for each configuration, is obtained from a systematic MC-simulation implemented realistically in Geant4. This approach has been found to be particularly useful. On the one hand, due to the different types and large number of 3He-tubes involved and, on the other hand, due to the additional constraints introduced by the ancillary detectors for charged particles and gamma-rays. Empowered by the robustness of the algorithm, we have been able to design a versatile detection system, which can be easily re-arranged into a compact mode in order to maximize the neutron detection performance, at the cost of the gamma-ray sensitivity. In summary, we have designed a system which shows, for neutron energies up to 1(5) MeV, a rather flat and high average efficiency of 68.6%(64%) and 75.7%(71%) for the hybrid and compact modes, respectively. The performance of the BRIKEN system has been also quantified realistically by means of MC-simulations made with different neutron energy distributions.  
  Address [Tarifeno-Saldivia, A.] UPC, Barcelona, Spain, Email: ariel.esteban.tarifeno@upc.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000405067800006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3209  
Permanent link to this record
 

 
Author n_TOF Collaboration (Barbagallo, M. et al); Domingo-Pardo, C.; Tain, J.L. url  doi
openurl 
  Title Experimental setup and procedure for the measurement of the Be-7(n,p)Li-7 reaction at n_TOF Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 887 Issue Pages 27-33  
  Keywords (down) Cosmological Lithium problem; Big bang nucleosynthesis; Be-7(n,p)Li-7 reaction; n_TOF spallation neutron source  
  Abstract Following the completion of the second neutron beam line and the related experimental area (EAR2) at the n_TOF spallation neutron source at CERN, several experiments were planned and performed. The high instantaneous neutron flux available in EAR2 allows to investigate neutron induced reactions with charged particles in the exit channel even employing targets made out of small amounts of short-lived radioactive isotopes. After the successful measurement of the Be-7(n,alpha)alpha cross section, the Be-7(n,p)Li-7 reaction was studied in order to provide still missing cross section data of relevance for Big Bang Nucleosynthesis (BBN), in an attempt to find a solution to the cosmological Lithium abundance problem. This paper describes the experimental setup employed in such a measurement and its characterization.  
  Address [Barbagallo, M.; Mastromarco, M.; Damone, L. A.; Mazzone, A.; Colonna, N.; Tagliente, G.; Variale, V.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy, Email: finocchiaro@lns.infn.ir  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000427814400005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3528  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva