toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Casals, M.; Fabbri, A.; Martinez, C.; Zanelli, J. url  doi
openurl 
  Title Quantum-corrected rotating black holes and naked singularities in (2+1) dimensions Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 10 Pages 104023 - 39pp  
  Keywords  
  Abstract We analytically investigate the perturbative effects of a quantum conformally coupled scalar field on rotating (2 + 1)-dimensional black holes and naked singularities. In both cases we obtain the quantum-back-reacted metric analytically. In the black hole case, we explore the quantum corrections on different regions of relevance for a rotating black hole geometry. We find that the quantum effects lead to a growth of both the event horizon and the ergosphere, as well as to a reduction of the angular velocity compared to their corresponding unperturbed values. Quantum corrections also give rise to the formation of a curvature singularity at the Cauchy horizon and show no evidence of the appearance of a superradiant instability. In the naked singularity case, quantum effects lead to the formation of a horizon that hides the conical defect, thus turning it into a black hole. The fact that these effects occur not only for static but also for spinning geometries makes a strong case for the role of quantum mechanics as a cosmic censor in Nature.  
  Address (up) [Casals, Marc] CBPF, BR-22290180 Rio De Janeiro, Brazil, Email: mcasals@cbpf.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000509560700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4263  
Permanent link to this record
 

 
Author Casals, M.; Fabbri, A.; Martinez, C.; Zanelli, J. url  doi
openurl 
  Title Quantum dress for a naked singularity Type Journal Article
  Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 760 Issue Pages 244-248  
  Keywords Semiclassical gravity; Quantum backreaction; Cosmic censorship; Black holes; Naked singularities; BTZ  
  Abstract We investigate semiclassical backreaction on a conical naked singularity space-time with a negative cosmological constant in (2 + 1)-dimensions. In particular, we calculate the renormalized quantum stress-energy tensor for a conformally coupled scalar field on such naked singularity space-time. We then obtain the backreacted metric via the semiclassical Einstein equations. We show that, in the regime where the semiclassical approximation can be trusted, backreaction dresses the naked singularity with an event horizon, thus enforcing (weak) cosmic censorship.  
  Address (up) [Casals, Marc] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil, Email: mcasals@cbpf.br;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000382890500037 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2804  
Permanent link to this record
 

 
Author Casals, M.; Fabbri, A.; Martinez, C.; Zanelli, J. url  doi
openurl 
  Title Quantum Backreaction on Three-Dimensional Black Holes and Naked Singularities Type Journal Article
  Year 2017 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 118 Issue 13 Pages 131102 - 6pp  
  Keywords  
  Abstract We analytically investigate backreaction by a quantum scalar field on two rotating Bañados-Teitelboim-Zanelli (BTZ) geometries: that of a black hole and that of a naked singularity. In the former case, we explore the quantum effects on various regions of relevance for a rotating black hole space-time. We find that the quantum effects lead to a growth of both the event horizon and the radius of the ergosphere, and to a reduction of the angular velocity, compared to the unperturbed values. Furthermore, they give rise to the formation of a curvature singularity at the Cauchy horizon and show no evidence of the appearance of a superradiant instability. In the case of a naked singularity, we find that quantum effects lead to the formation of a horizon that shields it, thus supporting evidence for the role of quantum mechanics as a cosmic censor in nature.  
  Address (up) [Casals, Marc] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil, Email: mcasals@cbpf.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000397809100005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3026  
Permanent link to this record
 

 
Author Clement, G.; Fabbri, A. url  doi
openurl 
  Title A scenario for critical scalar field collapse in AdS(3) Type Journal Article
  Year 2015 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 32 Issue 9 Pages 095009 - 16pp  
  Keywords critical collapse; exact solutions; AdS(3)  
  Abstract We present a family of exact solutions, depending on two parameters alpha and b (related to the scalar field strength), to the three-dimensional Einstein-scalar field equations with negative cosmological constant Lambda. For b not equal 0 these solutions reduce to the static Banados-Teitelboim-Zanelli (BTZ) family of vacuum solutions, with mass M = -alpha. For b not equal 0, the solutions become dynamical and develop a strong spacelike central singularity. The alpha < 0 solutions are black-hole like, with a global structure topologically similar to that of the BTZ black holes, and a finite effective mass. We show that the near-singularity behavior of the solutions with alpha > 0 agrees qualitatively with that observed in numerical simulations of sub-critical collapse, including the independence of the near-critical regime on the angle deficit of the spacetime. We analyze in the Lambda = 0 approximation the linear perturbations of the self-similar threshold solution, alpha = 0, and find that it has only one unstable growing mode, which qualifies it as a candidate critical solution for scalar field collapse.  
  Address (up) [Clement, Gerard] Univ Savoie, CNRS, LAPTh, F-74941 Annecy Le Vieux, France, Email: gerard.clement@lapth.cnrs.fr;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000353351500009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2192  
Permanent link to this record
 

 
Author Coutant, A.; Fabbri, A.; Parentani, R.; Balbinot, R.; Anderson, P.R. url  doi
openurl 
  Title Hawking radiation of massive modes and undulations Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 86 Issue 6 Pages 064022 - 17pp  
  Keywords  
  Abstract We compute the analogue Hawking radiation for modes which possess a small wave vector perpendicular to the horizon. For low frequencies, the resulting mass term induces a total reflection. This reflection is accompanied by an extra mode mixing which occurs in the supersonic region, and which cancels out the infrared divergence of the near horizon spectrum. As a result, the amplitude of the undulation (0-frequency wave with macroscopic amplitude) emitted in white hole flows now saturates at the linear level, unlike what is found in the massless case. In addition, we point out that the mass introduces a new type of undulation which is produced in black hole flows, and which is well described in the hydrodynamical regime.  
  Address (up) [Coutant, Antonin; Parentani, Renaud] Univ Paris 11, Phys Theor Lab, CNRS, UMR 8627, F-91405 Orsay, France, Email: antonin.coutant@th.u-psud.fr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000308642300005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1174  
Permanent link to this record
 

 
Author Dudley, R.A.; Anderson, P.R.; Balbinot, R.; Fabbri, A. url  doi
openurl 
  Title Correlation patterns from massive phonons in 1+1 dimensional acoustic black holes: A toy model Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 12 Pages 124011 - 18pp  
  Keywords  
  Abstract Transverse excitations in analogue black holes induce a masslike term in the longitudinal mode equation. With a simple toy model we show that correlation functions display a rather rich structure characterized by groups of approximately parallel peaks. For the most part the structure is completely different from that found in the massless case.  
  Address (up) [Dudley, Richard A.; Anderson, Paul R.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: dudlra13@wfu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000452979300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3834  
Permanent link to this record
 

 
Author Dudley, R.A.; Fabbri, A.; Anderson, P.R.; Balbinot, R. url  doi
openurl 
  Title Correlations between a Hawking particle and its partner in a 1+1D Bose-Einstein condensate analog black hole Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 10 Pages 105005 - 12pp  
  Keywords  
  Abstract The Fourier transform of the density-density correlation function in a Bose-Einstein condensate (BEC) analog black hole is a useful tool to investigate correlations between the Hawking particles and their partners. It can be expressed in terms of <(out)(a) over cap (ext)(up) (out)(a) over cap (int)(up)> where (out)(a) over cap (ext)(up) is the annihilation operator for the Hawking particle and (out)(a) over cap (int)(up) is the corresponding one for the partner. This basic quantity is calculated for three different models for the BEC flow. It is shown that in each model the inclusion of the effective potential in the mode equations makes a significant difference. Furthermore, particle production induced by this effective potential in the interior of the black hole is studied for each model and shown to be nonthermal. An interesting peak that is related to the particle production and is present in some models is discussed.  
  Address (up) [Dudley, Richard A.; Anderson, Paul R.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: dudlra13@wfu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000584963300005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4590  
Permanent link to this record
 

 
Author Euve, L.P.; Robertson, S.; James, N.; Fabbri, A.; Rousseaux, G. url  doi
openurl 
  Title Scattering of Co-Current Surface Waves on an Analogue Black Hole Type Journal Article
  Year 2020 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 124 Issue 14 Pages 141101 - 6pp  
  Keywords  
  Abstract We report on what is to our knowledge the first scattering experiment of surface waves on an accelerating transcritical flow, which in the analogue gravity context is described by an effective spacetime with a black-hole horizon. This spacetime has been probed by an incident co-current wave, which partially scatters into an outgoing countercurrent wave on each side of the horizon. The measured scattering amplitudes are compatible with the predictions of the hydrodynamical theory, where the kinematical description in terms of the effective metric is exact.  
  Address (up) [Euve, Leo-Paul] Univ Paris Diderot, Univ PSL, Lab Phys & Mecan Milieux Heterogenes, CNRS,Sorbonne Univ,UMR 7636,ESPCI, 10 Rue Vauquelin, F-75321 Paris 05, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000524336600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4364  
Permanent link to this record
 

 
Author Fabbri, A.; Balbinot, R.; Anderson, P.R. url  doi
openurl 
  Title Scattering coefficients and gray-body factor for 1D BEC acoustic black holes: Exact results Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 6 Pages 064046 - 6pp  
  Keywords  
  Abstract A complete set of exact analytic solutions to the mode equation is found in the region exterior to the acoustic horizon for a class of 1D Bose-Einstein condensate acoustic black holes. From these, analytic expressions for the scattering coefficients and gray-body factor are obtained. The results are used to verify previous predictions regarding the behaviors of the scattering coefficients and gray-body factor in the low-frequency limit.  
  Address (up) [Fabbri, Alessandro; Balbinot, Roberto] Ctr Studi & Ric Enrico Fermi, Piazza Viminale 1, I-00184 Rome, Italy, Email: afabbri@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000372421100005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2582  
Permanent link to this record
 

 
Author Fabbri, A.; Balbinot, R. url  doi
openurl 
  Title Ramp-up of Hawking Radiation in Bose-Einstein-Condensate Analog Black Holes Type Journal Article
  Year 2021 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 126 Issue 11 Pages 111301 - 6pp  
  Keywords  
  Abstract Inspired by a recent experiment by Steinhauer and co-workers, we present a simple model which describes the formation of an acoustic black hole in a Bose-Einstein condensate, allowing an analytical computation of the evolution in time of the corresponding density-density correlator. We show the emergence of analog Hawking radiation out of a “quantum atmosphere” region significantly displaced from the horizon. This is quantitatively studied both at T = 0 and even in the presence of an initial temperature T, as is always the case experimentally.  
  Address (up) [Fabbri, Alessandro] Ctr Mixto Univ Valencia, CSIC, Dept Fis Teor, C Dr Moliner 50, Burjassot 46100, Spain, Email: afabbri@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000652825400006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4842  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva