|
Abstract |
We present a family of exact solutions, depending on two parameters alpha and b (related to the scalar field strength), to the three-dimensional Einstein-scalar field equations with negative cosmological constant Lambda. For b not equal 0 these solutions reduce to the static Banados-Teitelboim-Zanelli (BTZ) family of vacuum solutions, with mass M = -alpha. For b not equal 0, the solutions become dynamical and develop a strong spacelike central singularity. The alpha < 0 solutions are black-hole like, with a global structure topologically similar to that of the BTZ black holes, and a finite effective mass. We show that the near-singularity behavior of the solutions with alpha > 0 agrees qualitatively with that observed in numerical simulations of sub-critical collapse, including the independence of the near-critical regime on the angle deficit of the spacetime. We analyze in the Lambda = 0 approximation the linear perturbations of the self-similar threshold solution, alpha = 0, and find that it has only one unstable growing mode, which qualifies it as a candidate critical solution for scalar field collapse. |
|