toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author ATLAS Collaboration (Aaboud, M. et al); Alvarez Piqueras, D.; Aparisi Pozo, J.A.; Bailey, A.J.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Jimenez Pena, J.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Miñano, M.; Mitsou, V.A.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title Measurement of the nuclear modification factor for inclusive jets in Pb plus Pb collisions at root s(NN)=5.02 TeV with the ATLAS detector Type Journal Article
  Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 790 Issue Pages 108-128  
  Keywords  
  Abstract (up) Measurements of the yield and nuclear modification factor, R-AA, for inclusive jet production are performed using 0.49 nb(-1) of Pb+Pb data at root s(NN) = 5.02 TeV and 25 pb(-1) of Pb+Pb data at root s = 5.02 TeV with the ATLAS detector at the LHC. Jets are reconstructed with the anti-k(t) algorithm with radius parameter R = 0.4 and are measured over the transverse momentum range of 40-1000 GeV in six rapidity intervals covering vertical bar y vertical bar < 2.8. The magnitude of R-AA increases with increasing jet transverse momentum, reaching a value of approximately 0.6 at 1 TeV in the most central collisions. The magnitude of R-AA also increases towards peripheral collisions. The value of R-AA is independent of rapidity at low jet transverse momenta, but it is observed to decrease with increasing rapidity at high transverse momenta.  
  Address [Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000460118200012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3932  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Bouchhar, N.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Chitishvili, M.; Costa, M.J.; Didenko,, M.; Escobar, C.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Lacasta, C.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valiente Moreno, E.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title Determination of the strong coupling constant from transverse energy-energy correlations in multijet events at root s=13 TeV with the ATLAS detector Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 085 - 54pp  
  Keywords Hadron-Hadron Scattering; Jet Physics; Jets  
  Abstract (up) Measurements of transverse energy-energy correlations and their associated azimuthal asymmetries in multijet events are presented. The analysis is performed using a data sample corresponding to 139 fb(-1) of proton-proton collisions at a centre-of-mass energy of root s = 13TeV, collected with the ATLAS detector at the Large Hadron Collider. The measurements are presented in bins of the scalar sum of the transverse momenta of the two leading jets and unfolded to particle level. They are then compared to next-to-next-to-leading-order perturbative QCD calculations for the first time, which feature a significant reduction in the theoretical uncertainties estimated using variations of the renormalisation and factorisation scales. The agreement between data and theory is good, thus providing a precision test of QCD at large momentum transfers Q. The strong coupling constant alpha(s) is extracted as a function of Q, showing a good agreement with the renormalisation group equation and with previous analyses. A simultaneous fit to all transverse energy-energy correlation distributions across different kinematic regions yields a value of alpha(s)( mZ) = 0.1175 +/- 0.0006 (exp.)(+0.0034) (-0.0017) (theo.), while the global fit to the asymmetry distributions yields alpha(s)(m(Z)) = 0.1185 +/- 0.0009 (exp.)(+0.0025)(-0.0012)(theo.).  
  Address [Deliot, F.; Duvnjak, D.; Jackson, P.; Kong, A. X. Y.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001061751900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5694  
Permanent link to this record
 

 
Author Baum, S.; Capozzi, F.; Horiuchi, S. url  doi
openurl 
  Title Rocks, water, and noble liquids: Unfolding the flavor contents of supernova neutrinos Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 12 Pages 123008 - 14pp  
  Keywords  
  Abstract (up) Measuring core-collapse supernova neutrinos, both from individual supernovae within the Milky Way and from past core collapses throughout the Universe (the diffuse supernova neutrino background, or DSNB), is one of the main goals of current and next generation neutrino experiments. Detecting the heavy -lepton flavor (muon and tau types, collectively nu x) component of the flux is particularly challenging due to small statistics and large backgrounds. While the next galactic neutrino burst will be observed in a plethora of neutrino channels, allowing us to measure a small number of nu x events, only upper limits are anticipated for the diffuse nu x flux even after decades of data taking with conventional detectors. However, paleo detectors could measure the time-integrated flux of neutrinos from galactic core-collapse supernovae via flavor-blind neutral current interactions. In this work, we show how combining a measurement of the average galactic core-collapse supernova flux with paleo detectors and measurements of the DSNB electron -type neutrino fluxes with the next-generation water Cherenkov detector Hyper-Kamiokande and the liquid noble gas detector DUNE will allow to determine the mean supernova nu x flux parameters with precision of order ten percent. Realizing this potential requires both the cosmic supernova rate out to z -1 and the integrated Galactic supernova rate over the last-1 Gyr to be established at the-10% level.  
  Address [Baum, Sebastian] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA, Email: sbaum@stanford.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000897104600007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5439  
Permanent link to this record
 

 
Author Villanueva-Domingo, P.; Villaescusa-Navarro, F. url  doi
openurl 
  Title Removing Astrophysics in 21 cm Maps with Neural Networks Type Journal Article
  Year 2021 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 907 Issue 1 Pages 44 - 14pp  
  Keywords Cosmology; Cold dark matter; Dark matter; Dark matter distribution; H I line emission; Intergalactic medium; Cosmological evolution; Convolutional neural networks; Large-scale structure of the universe  
  Abstract (up) Measuring temperature fluctuations in the 21 cm signal from the epoch of reionization and the cosmic dawn is one of the most promising ways to study the universe at high redshifts. Unfortunately, the 21 cm signal is affected by both cosmology and astrophysics processes in a nontrivial manner. We run a suite of 1000 numerical simulations with different values of the main astrophysical parameters. From these simulations we produce tens of thousands of 21 cm maps at redshifts 10 <= z <= 20. We train a convolutional neural network to remove the effects of astrophysics from the 21 cm maps and output maps of the underlying matter field. We show that our model is able to generate 2D matter fields not only that resemble the true ones visually but whose statistical properties agree with the true ones within a few percent down to scales 2 Mpc(-1). We demonstrate that our neural network retains astrophysical information that can be used to constrain the value of the astrophysical parameters. Finally, we use saliency maps to try to understand which features of the 21 cm maps the network is using in order to determine the value of the astrophysical parameters.  
  Address [Villanueva-Domingo, Pablo] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: Pablo.Villanueva@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000612333400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4698  
Permanent link to this record
 

 
Author Thisse, D. et al; Algora, A.; Guadilla, V. doi  openurl
  Title Study of N=50 gap evolution around Z=32: new structure information for Ge-82 Type Journal Article
  Year 2023 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 59 Issue 7 Pages 153 - 13pp  
  Keywords  
  Abstract (up) Medium spin states of light N = 50 isotones have been populated using fast neutron-induced fission of Th-232. Online prompt gamma spectroscopy has been performed using the hybrid gamma spectrometer nu-Ball coupled to the LICORNE directional neutron source at the ALTO facility of IJCLab. Medium spin states of the neutron-rich nucleus Ge-82 have been investigated using gamma-gamma and gamma-gamma-gamma coincidence data to exploit the resolving power of nu-Ball. Two new transitions were assigned to this nucleus and a new level was placed in the level scheme. We tentatively assigned to this new state a (7(+)) spin-parity, which is interpreted as a new N = 50 core breaking state. This provides further insight into the energy evolution of the N = 50 shell gap toward Ni-78.  
  Address [Thisse, D.; Verney, D.; Wilson, J. N.; Adsley, P.; Babo, M.; Chakma, R.; Delafosse, C.; Guadilla, V.; Hauschild, K.; Ljungvall, J.; Lopez-Martens, A.; Lozeva, R.; Matea, I.; Nemer, J.; Popovitch, Y.; Qi, L.; Tocabens, G.] Univ Paris Saclay, CNRS, IN2P3, IJCLab, F-91405 Orsay, France, Email: damien.thisse@cea.fr  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001032187000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5602  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J. url  doi
openurl 
  Title Precise determination of the B-s(0)-B-s(-0) oscillation frequency Type Journal Article
  Year 2022 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 18 Issue Pages 54-58  
  Keywords  
  Abstract (up) Mesons comprising a beauty quark and strange quark can oscillate between particle (B-s(0)) and antiparticle (B-s(-0)) flavour eigenstates, with a frequency given by the mass difference between heavy and light mass eigenstates, Delta m(s). Here we present a measurement of Delta m(s) using B-s(0) -> D-s(-)pi(+) decays produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The oscillation frequency is found to be Delta m(s) = 17.7683 +/- 0.0051 +/- 0.0032 ps(-1), where the first uncertainty is statistical and the second is systematic. This measurement improves on the current Delta m(s) precision by a factor of two. We combine this result with previous LHCb measurements to determine Delta m(s) = 17.7656 +/- 0.0057 ps(-1), which is the legacy measurement of the original LHCb detector.  
  Address [Aaij, R.; Butter, J. S.; Akiba, K. Carvalho; Sole, S. Ferreres; Gabriel, E.; Geertsema, R. E.; Greeven, L. M.; Heijhoff, K.; Hulsbergen, W.; Hynds, D.; Jans, E.; Klaver, S.; Koppenburg, P.; Kostiuk, I; Kuindersma, H. S.; Martinez, M. Lucio; Lukashenko, V; Mauri, A.; Merk, M.; Pellegrino, A.; Sanchez Gras, C.; Schubiger, M.; Snoch, A.; Tuning, N.; Usachov, A.; van Beuzekom, M.; Veronesi, M.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands, Email: alessandro.bertolin@pd.infn.it  
  Corporate Author Thesis  
  Publisher Nature Portfolio Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000739810100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5075  
Permanent link to this record
 

 
Author Contreras, T.; Martins, A.; Stanford, C.; Escobar, C.O.; Guenette, R.; Stancari, M.; Martin-Albo, J.; Lawrence-Sanderson, B.; Para, A.; Kish, A.; Kellerer, F. url  doi
openurl 
  Title A method to characterize metalenses for light collection applications Type Journal Article
  Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 18 Issue 9 Pages T09004 - 11pp  
  Keywords  
  Abstract (up) Metalenses and metasurfaces are promising emerging technologies that could improve light collection in light collection detectors, concentrating light on small area photodetectors such as silicon photomultipliers. Here we present a detailed method to characterize metalenses to assess their efficiency at concentrating monochromatic light coming from a wide range of incidence angles, not taking into account their imaging quality.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6086  
Permanent link to this record
 

 
Author Martins, A.; da Mota, A.F.; Stanford, C.; Contreras, T.; Martin-Albo, J.; Kish, A.; Escobar, C.O.; Para, A.; Guenette, R. url  doi
openurl 
  Title Simple strategy for the simulation of axially symmetric large-area metasurfaces Type Journal Article
  Year 2024 Publication Journal of the Optical Society of America B Abbreviated Journal J. Opt. Soc. Am. B  
  Volume 41 Issue 5 Pages 1261-1269  
  Keywords  
  Abstract (up) Metalenses are composed of nanostructures for focusing light and have been widely explored in many exciting applications. However, their expanding dimensions pose simulation challenges. We propose a method to simulate metalenses in a timely manner using vectorial wave and ray tracing models. We sample the metalens's radial phase gradient and locally approximate the phase profile by a linear phase response. Each sampling point is modeled as a binary blazed grating, employing the chosen nanostructure, to build a transfer function set. The metalens transmission or reflection is then obtained by applying the corresponding transfer function to the incoming field on the regions surrounding each sampling point. Fourier optics is used to calculate the scattered fields under arbitrary illumination for the vectorial wave method, and a Monte Carlo algorithm is used in the ray tracing formalism. We validated our method against finite -difference time domain simulations at 632 nm, and we were able to simulate metalenses larger than 3000 wavelengths in diameter on a personal computer.  
  Address [Martins, Augusto; Guenette, Roxanne] Univ Manchester, Dept Phys, Manchester M13 9PL, England, Email: augusto.martins@york.ac.uk  
  Corporate Author Thesis  
  Publisher Optica Publishing Group Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0740-3224 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001237140900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6140  
Permanent link to this record
 

 
Author Loya Villalpando, A.A.; Martin-Albo, J.; Chen, W.T.; Guenette, R.; Lego, C.; Park, J.S.; Capasso, F. url  doi
openurl 
  Title Improving the light collection efficiency of silicon photomultipliers through the use of metalenses Type Journal Article
  Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 15 Issue 11 Pages P11021 - 13pp  
  Keywords Optical detector readout concepts; Solid state detectors; Dark Matter detectors (WIMPS, axions, etc); Double-beta decay detectors  
  Abstract (up) Metalenses are optical devices that implement nanostructures as phase shifters to focus incident light. Their compactness and simple fabrication make them a potential cost-effective solution for increasing light collection efficiency in particle detectors with limited photosensitive area coverage. Here we report on the characterization and performance of metalenses in increasing the light collection efficiency of silicon photomultipliers (SiPM) of various sizes using an LED of 630 nm, and find a six to seven-fold increase in signal for a 1.3 x 1 3 mm(2) SiPM when coupled with a 10-mm-diameter metalens manufactured using deep ultraviolet stepper lithography. Such improvements could be valuable for future generations of particle detectors, particularly those employed in rare-event searches such as dark matter and neutrinoless double beta decay.  
  Address [Villalpando, A. A. Loya; Martin-Albo, J.; Guenette, R.; Lego, C.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA, Email: aloyavil@caltech.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000595650800009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4634  
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F. url  doi
openurl 
  Title HAWC Search for High-mass Microquasars Type Journal Article
  Year 2021 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.  
  Volume 912 Issue 1 Pages L4 - 12pp  
  Keywords  
  Abstract (up) Microquasars with high-mass companion stars are promising very high energy (VHE; 0.1-100 TeV) gamma-ray emitters, but their behaviors above 10 TeV are poorly known. Using the High Altitude Water Cerenkov (HAWC) observatory, we search for excess gamma-ray emission coincident with the positions of known high-mass microquasars (HMMQs). No significant emission is observed for LS 5039, Cyg X-1, Cyg X-3, and SS 433 with 1523 days of HAWC data. We set the most stringent limit above 10 TeV obtained to date on each individual source. Under the assumption that HMMQs produce gamma rays via a common mechanism, we have performed source-stacking searches, considering two different scenarios: (I) gamma-ray luminosity is a fraction epsilon ( gamma ) of the microquasar jet luminosity, and (II) VHE gamma rays are produced by relativistic electrons upscattering the radiation field of the companion star in a magnetic field B. We obtain epsilon ( gamma ) < 5.4 x 10(-6) for scenario I, which tightly constrains models that suggest observable high-energy neutrino emission by HMMQs. In the case of scenario II, the nondetection of VHE gamma rays yields a strong magnetic field, which challenges synchrotron radiation as the dominant mechanism of the microquasar emission between 10 keV and 10 MeV.  
  Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Malone, K.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA, Email: kefang@physics.wisc.edu;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-8205 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000646368700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4798  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva