toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author NEXT Collaboration (Azevedo, C.D.R. et al); Gomez-Cadenas, J.J.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Ferrario, P.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Querol, M.; Renner, J.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N. url  doi
openurl 
  Title Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (up) Nucl. Instrum. Methods Phys. Res. A  
  Volume 877 Issue Pages 157-172  
  Keywords Optical TPCs; Microscopic simulation; Xenon scintillation  
  Abstract We introduce a simulation framework for the transport of high and low energy electrons in xenon-based optical time projection chambers (OTPCs). The simulation relies on elementary cross sections (electron-atom and electron-molecule) and incorporates, in order to compute the gas scintillation, the reaction/quenching rates (atom-atom and atom-molecule) of the first 41 excited states of xenon and the relevant associated excimers, together with their radiative cascade. The results compare positively with observations made in pure xenon and its mixtures with CO2 and CF4 in a range of pressures from 0.1 to 10 bar. This work sheds some light on the elementary processes responsible for the primary and secondary xenon-scintillation mechanisms in the presence of additives, that are of interest to the OTPC technology.  
  Address [Azevedo, C. D. R.] Univ Aveiro, I3N, Phys Dept, Aveiro, Portugal, Email: Diego.Gonzalez.Diaz@usc.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000415128000022 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3371  
Permanent link to this record
 

 
Author NEXT Collaboration (Trindade, A.M.F. et al); Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Ferrario, P.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I; Lopez-March, N.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Rodriguez, J.; Simon, A.; Sorel, M.; Torrent, J.; Yahlali, N. doi  openurl
  Title Study of the loss of xenon scintillation in xenon-trimethylamine mixtures Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (up) Nucl. Instrum. Methods Phys. Res. A  
  Volume 905 Issue Pages 22-28  
  Keywords Gaseous radiation detectors; Noble gas mixtures; Molecular additives; VUV absorption  
  Abstract This work investigates the capability of TMA ((CH3)(3)N) molecules to shift the wavelength of Xe VUV emission (160-188 nm) to a longer, more manageable, wavelength (260-350 nm). Light emitted from a Xe lamp was passed through a gas chamber filled with Xe-TMA mixtures at 800 Torr and detected with a photomultiplier tube. Using bandpass filters in the proper transmission ranges, no reemitted light was observed experimentally. Considering the detection limit of the experimental system, if reemission by TMA molecules occurs, it is below 0.3% of the scintillation absorbed in the 160-188 nm range. An absorption coefficient value for xenon VUV light by TMA of 0.43 +/- 0.03 cm(-1) Torr(-1) was also obtained. These results can be especially important for experiments considering TMA as a molecular additive to Xe in large volume optical time projection chambers.  
  Address [Trindade, A. M. F.; Escada, J.; Cortez, A. F., V; Borges, F. I. G. M.; Santos, F. P.; Conde, C. A. N.] LIP Lab Instrumentacao & Fis Expt Particulas, Coimbra, Portugal, Email: Kalexandre.trindade@coimbra.lip.pt  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000444425700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3730  
Permanent link to this record
 

 
Author NEXT Collaboration (Felkai, R. et al); Sorel, M.; Lopez-March, N.; Gomez-Cadenas, J.J.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Ferrario, P.; Laing, A.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Romo-Luque, C.; Rodriguez, J.; Simon, A.; Torrent, J.; Yahlali, N. url  doi
openurl 
  Title Helium-Xenon mixtures to improve the topological signature in high pressure gas xenon TPCs Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (up) Nucl. Instrum. Methods Phys. Res. A  
  Volume 905 Issue Pages 82-90  
  Keywords Helium; Xenon; Double-beta decay; TPC; Low diffusion; Electroluminescence  
  Abstract Within the framework of xenon-based double beta decay experiments, we propose the possibility to improve the background rejection of an electroluminescent Time Projection Chamber (EL TPC) by reducing the diffusion of the drifting electrons while keeping nearly intact the energy resolution of a pure xenon EL TPC. Based on state-of-the-art microscopic simulations, a substantial addition of helium, around 10 or 15 %, may reduce drastically the transverse diffusion down to 2.5 mm/root m from the 10.5 mm/root m of pure xenon. The longitudinal diffusion remains around 4 mm/root m. Light production studies have been performed as well. They show that the relative variation in energy resolution introduced by such a change does not exceed a few percent, which leaves the energy resolution practically unchanged. The technical caveats of using photomultipliers close to an helium atmosphere are also discussed in detail.  
  Address [Adams, C.; Guenette, R.; Martin-Albo, J.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA, Email: francesc.monrabalcapilla@uta.edu  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000444425700010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3731  
Permanent link to this record
 

 
Author NEXT Collaboration (Jones, B.J.P. et al); Carcel, S.; Carrion, J.V.; Diaz, J.; Martin-Albo, J.; Martinez, A.; Martinez-Vara, M.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N. url  doi
openurl 
  Title The dynamics of ions on phased radio-frequency carpets in high pressure gases and application for barium tagging in xenon gas time projection chambers Type Journal Article
  Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal (up) Nucl. Instrum. Methods Phys. Res. A  
  Volume 1039 Issue Pages 167000 - 19pp  
  Keywords RF carpets; Ion transport; Neutrinoless double beta decay; Barium tagging  
  Abstract Radio-frequency (RF) carpets with ultra-fine pitches are examined for ion transport in gases at atmospheric pressures and above. We develop new analytic and computational methods for modeling RF ion transport at densities where dynamics are strongly influenced by buffer gas collisions. An analytic description of levitating and sweeping forces from phased arrays is obtained, then thermodynamic and kinetic principles are used to calculate ion loss rates in the presence of collisions. This methodology is validated against detailed microscopic SIMION simulations. We then explore a parameter space of special interest for neutrinoless double beta decay experiments: transport of barium ions in xenon at pressures from 1 to 10 bar. Our computations account for molecular ion formation and pressure dependent mobility as well as finite temperature effects. We discuss the challenges associated with achieving suitable operating conditions, which lie beyond the capabilities of existing devices, using presently available or near-future manufacturing techniques.  
  Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA, Email: ben.jones@uta.edu  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000861747900008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5372  
Permanent link to this record
 

 
Author NEMO-3 Collaboration (Argyriades, J. et al); Martin-Albo, J.; Novella, P. url  doi
openurl 
  Title Measurement of the two neutrino double beta decay half-life of Zr-96 with the NEMO-3 detector Type Journal Article
  Year 2010 Publication Nuclear Physics A Abbreviated Journal (up) Nucl. Phys. A  
  Volume 847 Issue 3-4 Pages 168-179  
  Keywords RADIOACTIVITY Zr-96(2 beta); measured E-beta,E- E-gamma, beta beta-, beta gamma-coin; deduced T-1/2 for 2 nu beta beta-decay, NEMO-3 detector  
  Abstract Using 9.4 g of Zr-96 isotope and 1221 days of data from the NEMO-3 detector corresponding (0 0.031 kg y, the obtained 2 nu beta beta decay half-life measurement is T-1/2(2 nu) = [2.35 +/- 0.14(stat) +/- 0.16(syst)] x 10(19) yr. Different characteristics of the final state electrons have been studied, such as the energy sum, individual electron energy, and angular distribution. The 2v nuclear matrix element is extracted using the measured 2 nu beta beta half-life and is M-2 nu = 0.049 +/- 0.002. Constraints on 0 nu beta beta decay have also been set.  
  Address [Basharina-Freshville, A.; Chapon, A.; Daraktchieva, Z.; Flack, R.; Kauer, M.; King, S.; Saakyan, R.; Thomas, J.; Vasiliev, V.] UCL, London WC1E 6BT, England, Email: kauer@hep.ucl.ac.uk  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-9474 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283955700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 337  
Permanent link to this record
 

 
Author NEXT Collaboration (Henriques, C.A.O. et al); Gomez-Cadenas, J.J.; Alvarez, V.; Benlloch-Rodriguez, J.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Ferrario, P.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Torrent, J.; Yahlali, N. url  doi
openurl 
  Title Secondary scintillation yield of xenon with sub-percent levels of CO2 additive for rare-event detection Type Journal Article
  Year 2017 Publication Physics Letters B Abbreviated Journal (up) Phys. Lett. B  
  Volume 773 Issue Pages 663-671  
  Keywords Double beta decay; Neutrino; Rare event detection; Electroluminescence; Secondary scintillation; Xenon  
  Abstract Xe-CO2 mixtures are important alternatives to pure xenon in Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification with applications in the important field of rare event detection such as directional dark matter, double electron capture and double beta decay detection. The addition of CO2 to pure xenon at the level of 0.05-0.1% can reduce significantly the scale of electron diffusion from 10 mm/root m to 2.5 mm/root m, with high impact on the discrimination of the events through pattern recognition of the topology of primary ionization trails. We have measured the electroluminescence (EL) yield of Xe-CO2 mixtures, with sub-percent CO2 concentrations. We demonstrate that the EL production is still high in these mixtures, 70% and 35% relative to that produced in pure xenon, for CO2 concentrations around 0.05% and 0.1%, respectively. The contribution of the statistical fluctuations in EL production to the energy resolution increases with increasing CO2 concentration, being smaller than the contribution of the Fano factor for concentrations below 0.1% CO2.  
  Address [Henriques, C. A. O.; Freitas, E. D. C.; Mano, R. D. P.; Jorge, M. R.; Fernandes, L. M. P.; Monteiro, C. M. B.; dos Santos, J. M. F.] Univ Coimbra, Phys Dept, LIBPhys, Rua Larga, P-3004516 Coimbra, Portugal, Email: cristina@gian.fis.uc.pt  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000413294200099 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3342  
Permanent link to this record
 

 
Author Abele, H. et al; Algora, A.; Gonzalez-Alonso, M.; Novella, P. url  doi
openurl 
  Title Particle physics at the European Spallation Source Type Journal Article
  Year 2023 Publication Physics Reports Abbreviated Journal (up) Phys. Rep.  
  Volume 1023 Issue Pages 1-84  
  Keywords ESS; Neutrons; NNBAR; ESSnuSB; nEDM  
  Abstract Presently under construction in Lund, Sweden, the European Spallation Source (ESS) will be the world's brightest neutron source. As such, it has the potential for a particle physics program with a unique reach and which is complementary to that available at other facilities. This paper describes proposed particle physics activities for the ESS. These encompass the exploitation of both the neutrons and neutrinos produced at the ESS for high precision (sensitivity) measurements (searches).  
  Address [Fynbo, H. O. U.; Uggerhoj, U. I.] Aarhus Univ, Dept Phys & Astron, Aarhus, Denmark, Email: milstead@fysik.su.se  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1573 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001063474900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5685  
Permanent link to this record
 

 
Author HARP Collaboration (Apollonio, M. et al); Burguet-Castell, J.; Cervera-Villanueva, A.; Gomez-Cadenas, J.J.; Martin-Albo, J.; Novella, P.; Sorel, M. url  doi
openurl 
  Title Measurements of forward proton production with incident protons and charged pions on nuclear targets at the CERN Proton Synchroton Type Journal Article
  Year 2010 Publication Physical Review C Abbreviated Journal (up) Phys. Rev. C  
  Volume 82 Issue 4 Pages 045208 - 33pp  
  Keywords  
  Abstract Measurements of the double-differential proton production cross-section d(2 sigma)/dpd Omega in the range of momentum 0.5 GeV/c <= p < 8.0 GeV/c and angle 0.05 rad <= theta < 0.25 rad in collisions of charged pions and protons on beryllium, carbon, aluminium, copper, tin, tantalum, and lead are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN Proton Synchrotron. Incident particles were identified by an elaborate system of beam detectors and impinged on a target of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using the forward spectrometer of the HARP experiment. Results are obtained for the double-differential cross-sections mainly at four incident beam momenta (3, 5, 8, and 12 GeV/c). Measurements are compared with predictions of the GEANT4 and MARS Monte Carlo generators.  
  Address [Bonesini, M.; Ferri, F.] Sez INFN Milano Bicocca, Milan, Italy, Email: maurizio.bonesini@mib.infn.it  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283579000005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 346  
Permanent link to this record
 

 
Author Double Chooz collaboration (Abe, Y. et al); Novella, P. url  doi
openurl 
  Title Muon capture on light isotopes measured with the Double Chooz detector Type Journal Article
  Year 2016 Publication Physical Review C Abbreviated Journal (up) Phys. Rev. C  
  Volume 93 Issue 5 Pages 054608 - 18pp  
  Keywords  
  Abstract Using the Double Chooz detector, designed to measure the neutrino mixing angle theta(13), the products of mu(-) capture on C-12, C-13, N-14, and O-16 have been measured. Over a period of 489.5 days, 2.3 x 10(6) stopping cosmic mu(-) have been collected, of which 1.8 x 10(5) captured on carbon, nitrogen, or oxygen nuclei in the inner detector scintillator or acrylic vessels. The resulting isotopes were tagged using prompt neutron emission (when applicable), the subsequent beta decays, and, in some cases, beta-delayed neutrons. The most precise measurement of the rate of C-12(mu(-), nu)B-12 to date is reported: 6.57(-0.21)(+0.11) x 10(3) s(-1), or (17.35(-0.59)(+0.35))% of nuclear captures. By tagging excited states emitting gamma s, the ground state transition rate to B-12 has been determined to be 5.68(-0.23)(+0.14) x 10(3) s(-1). The heretofore unobserved reactions C-12(mu(-), nu alpha)Li-8, C-13(mu(-), nu n alpha)Li-8, and C-13(mu(-), nu n)B-12 are measured. Further, a population of beta n decays following stopping muons is identified with 5.5 sigma significance. Statistics limit our ability to identify these decays definitively. Assuming negligible production of He-8, the reaction C-13(mu(-), nu alpha)Li-9 is found to be present at the 2.7 sigma level. Limits are set on a variety of other processes.  
  Address [Alt, C.; Bekman, I.; Cabrera, A.; Hellwig, D.; Lucht, S.; Schoppmann, S.; Soiron, M.; Stahl, A.; Wiebusch, C.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany, Email: strait@hep.uchicago.edu  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000375999500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2679  
Permanent link to this record
 

 
Author NEXT Collaboration (Novella, P. et al); Carcel, S.; Carrion, J.V.; Diaz, J.; Martin-Albo, J.; Martinez, A.; Martinez-Vara, M.; Muñoz Vidal, J.; Palmeiro, B.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N. url  doi
openurl 
  Title Measurement of the Xe-136 two-neutrino double-beta-decay half-life via direct background subtraction in NEXT Type Journal Article
  Year 2022 Publication Physical Review C Abbreviated Journal (up) Phys. Rev. C  
  Volume 105 Issue 5 Pages 055501 - 8pp  
  Keywords  
  Abstract We report a measurement of the half-life of the Xe-136 two-neutrino double-beta decay performed with a novel direct-background-subtraction technique. The analysis relies on the data collected with the NEXT-White detector operated with Xe-136-enriched and Xe-136-depleted xenon, as well as on the topology of double-electron tracks. With a fiducial mass of only 3.5 kg of Xe, a half-life of 2.34(-0.46)(+0.80) (stat)(-0.17)(+0.30) (sys) x 10(21) yr is derived from the background-subtracted energy spectrum. The presented technique demonstrates the feasibility of unique background-model-independent neutrinoless double-beta-decay searches.  
  Address [Novella, P.; Sorel, M.; Uson, A.; Carcel, S.; Carrion, J., V; Diaz, J.; Martin-Albo, J.; Martinez, A.; Martinez-Vara, M.; Vidal, J. Munoz; Palmeiro, B.; Querol, M.; Romo-Luque, C.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: auson@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000810927800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5263  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva