toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) DUNE Collaboration (Abud, A.A. et al); Amar Es-Sghir, H.; Amedo, P.; Antonova, M.; Barenboim, G.; Benitez Montiel, C.; Capo, J.; Cervera Villanueva, A.; De Romeri, V.; Lopez March, N.; Martin-Albo, J.; Martinez Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sanchez Bravo, A.; Sorel, M.; Soto-Oton, J.; Tortola, M.; Tuzi, M.; Ureña Gonzalez, J.; Valle, J.W.F.; Yahlali, N. url  doi
openurl 
  Title Neutrino interaction vertex reconstruction in DUNE with Pandora deep learning Type Journal Article
  Year 2025 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 85 Issue 6 Pages 697 - 24pp  
  Keywords  
  Abstract The Pandora Software Development Kit and algorithm libraries perform reconstruction of neutrino interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at the Deep Underground Neutrino Experiment, which will operate four large-scale liquid argon time projection chambers at the far detector site in South Dakota, producing high-resolution images of charged particles emerging from neutrino interactions. While these high-resolution images provide excellent opportunities for physics, the complex topologies require sophisticated pattern recognition capabilities to interpret signals from the detectors as physically meaningful objects that form the inputs to physics analyses. A critical component is the identification of the neutrino interaction vertex. Subsequent reconstruction algorithms use this location to identify the individual primary particles and ensure they each result in a separate reconstructed particle. A new vertex-finding procedure described in this article integrates a U-ResNet neural network performing hit-level classification into the multi-algorithm approach used by Pandora to identify the neutrino interaction vertex. The machine learning solution is seamlessly integrated into a chain of pattern-recognition algorithms. The technique substantially outperforms the previous BDT-based solution, with a more than 20% increase in the efficiency of sub-1 cm vertex reconstruction across all neutrino flavours.  
  Address [Jain, V.] SUNY Albany, Albany, NY 12222 USA, Email: andrew.chappell@warwick.ac.uk  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001525509600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6783  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciónAgencia Estatal de Investigaciongva