toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Barenboim, G.; Del Debbio, L.; Hirn, J.; Sanz, V. url  doi
openurl 
  Title Exploring how a generative AI interprets music Type Journal Article
  Year 2024 Publication Neural Computing and Applications Abbreviated Journal Neural Comput. Appl.  
  Volume 36 Issue Pages 17007–17022  
  Keywords  
  Abstract We aim to investigate how closely neural networks (NNs) mimic human thinking. As a step in this direction, we study the behavior of artificial neuron(s) that fire most when the input data score high on some specific emergent concepts. In this paper, we focus on music, where the emergent concepts are those of rhythm, pitch and melody as commonly used by humans. As a black box to pry open, we focus on Google’s MusicVAE, a pre-trained NN that handles music tracks by encoding them in terms of 512 latent variables. We show that several hundreds of these latent variables are “irrelevant” in the sense that can be set to zero with minimal impact on the reconstruction accuracy. The remaining few dozens of latent variables can be sorted by order of relevance by comparing their variance. We show that the first few most relevant variables, and only those, correlate highly with dozens of human-defined measures that describe rhythm and pitch in music pieces, thereby efficiently encapsulating many of these human-understandable concepts in a few nonlinear variables.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6583  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva