toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Ding, G.J.; Valle, J.W.F. url  doi
openurl 
  Title The symmetry approach to quark and lepton masses and mixing Type Journal Article
  Year 2025 Publication Physics Reports Abbreviated Journal Phys. Rep.  
  Volume 1109 Issue Pages 1-105  
  Keywords Fermion mixing; CP violation; Generalized CP; Flavour and modular symmetry; Orbifolds; Warped-flavordynamics  
  Abstract The Standard Model lacks an organizing principle to describe quark and lepton “flavours”. Neutrino oscillation experiments show that leptons mix very differently from quarks, adding a major challenge to the flavour puzzle. We briefly sketch the seesaw and the dark-matter-mediated “scotogenic” neutrino mass generation approaches. We discuss the limitations of popular neutrino mixing patterns and examine the possibility that they arise from symmetry, giving a bottom-up approach to residual flavour and CP symmetries. We show how such family and/or CP symmetries can yield novel, viable and predictive mixing patterns. Model-independent ways to predict lepton mixing and neutrino mass sum rules are reviewed. We also discuss UV-complete flavour theories in four and more space-time dimensions. As benchmark examples we present an A4 scotogenic construction with trimaximal mixing pattern TM2 and another with S4 flavour symmetry and generalized CP symmetry. Higher-dimensional flavour completions are also briefly discussed, such as 5-D warped flavordynamics with a T ' symmetry yielding a TM1 mixing pattern, detectable neutrinoless double beta decay rates and a very good global fit of flavour observables. We also mention 6-D orbifolds as a way to fix the structure of the 4-D family symmetry. We give a scotogenic benchmark orbifold model predicting the "golden'' quark-lepton mass relation, stringent neutrino oscillation parameter regions, and an excellent global flavour fit, including quark observables. Finally, we discuss promising recent progress in tackling the flavour issue through the use of modular symmetries.  
  Address [Ding, Gui-Jun] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China, Email: dinggj@ustc.edu.cn;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1573 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001413777000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6503  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva