|
Abstract |
The details of the minimal cosmological standard model (MCSM) proposed in [The minimal cosmological standard model, arXiv:2403.05390.] are discussed. The model is based on the scalesymmetry and the global Peccei-Quinn (PQ) symmetry with a key assumption that the latter is broken only in the gravity sector in a scale-invariant manner. We show that the model provides a quite simple unified framework for the unknown history of the Universe from inflation to the epoch of big-bang nucleosynthesis, simultaneously addressing key puzzles of high energy theory and cosmology: (i) the origin of scales, (ii) primordial inflation, (iii) matter-antimatter asymmetry, (iv) tiny neutrino masses, (v) dark matter, and (vi) the strong CP-problem. Scale symmetry can be exact, and the Planck scale is dynamically generated. The presence of Gauss-Bonnet term may safely retain dangerous nonperturbative symmetry-breaking effects negligible, allowing a large-field trans-Planckian inflation along the PQ-field. Isocurvature perturbations of axi-Majorons are suppressed. A sizable amount of PQ-number asymmetry is generated at the end of inflation, and conserved afterward. Domain wall problem is absent due to the nonrestoration of the symmetry and the nonzero PQ-number asymmetry. Baryogenesis can be realized by either the transfer of the PQ-number asymmetry through the seesaw sector, or by resonant leptogenesis. Dark matter is purely cold axi-Majorons from the misalignment contribution with the symmetry-breaking scale of O(1012) GeV. Hot axi-Majorons from the decay of the inflaton become a natural source for a sizable amount of dark radiation. Inflationary gravitational waves have information about the mass parameters of the lightest left-handed and right-handed neutrinos, thanks to the presence of an early matterdomination era driven by the long-lived lightest right-handed neutrino species. |
|