toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Barenboim, G.; Ko, P.; Park, W.I. url  doi
openurl 
  Title Axi-Majoron: One-shot solution to most of the big puzzles of particle cosmology Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 110 Issue 12 Pages 123521 - 32pp  
  Keywords  
  Abstract The details of the minimal cosmological standard model (MCSM) proposed in [The minimal cosmological standard model, arXiv:2403.05390.] are discussed. The model is based on the scalesymmetry and the global Peccei-Quinn (PQ) symmetry with a key assumption that the latter is broken only in the gravity sector in a scale-invariant manner. We show that the model provides a quite simple unified framework for the unknown history of the Universe from inflation to the epoch of big-bang nucleosynthesis, simultaneously addressing key puzzles of high energy theory and cosmology: (i) the origin of scales, (ii) primordial inflation, (iii) matter-antimatter asymmetry, (iv) tiny neutrino masses, (v) dark matter, and (vi) the strong CP-problem. Scale symmetry can be exact, and the Planck scale is dynamically generated. The presence of Gauss-Bonnet term may safely retain dangerous nonperturbative symmetry-breaking effects negligible, allowing a large-field trans-Planckian inflation along the PQ-field. Isocurvature perturbations of axi-Majorons are suppressed. A sizable amount of PQ-number asymmetry is generated at the end of inflation, and conserved afterward. Domain wall problem is absent due to the nonrestoration of the symmetry and the nonzero PQ-number asymmetry. Baryogenesis can be realized by either the transfer of the PQ-number asymmetry through the seesaw sector, or by resonant leptogenesis. Dark matter is purely cold axi-Majorons from the misalignment contribution with the symmetry-breaking scale of O(1012) GeV. Hot axi-Majorons from the decay of the inflaton become a natural source for a sizable amount of dark radiation. Inflationary gravitational waves have information about the mass parameters of the lightest left-handed and right-handed neutrinos, thanks to the presence of an early matterdomination era driven by the long-lived lightest right-handed neutrino species.  
  Address [Barenboim, Gabriela; Park, Wan-il] Univ Valencia, Inst Fis Corpuscular, CSIC, Paterna 46980, Spain, Email: gabriela.barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001378683600004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6373  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva