toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Kumar, R.; Nath, N.; Srivastava, R. url  doi
openurl 
  Title Cutting the scotogenic loop: adding flavor to dark matter Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 036 - 37pp  
  Keywords Models for Dark Matter; Neutrino Mixing; Particle Nature of Dark Matter  
  Abstract We introduce a framework for hybrid neutrino mass generation, wherein scotogenic dark sector particles, including dark matter, are charged non-trivially under the A4 flavor symmetry. The spontaneous breaking of the A4 group to residual Z2 subgroup results in the “cutting” of the radiative loop. As a consequence the neutrinos acquire mass through the hybrid “scoto-seesaw” mass mechanism, combining aspects of both the tree-level seesaw and one-loop scotogenic mechanisms, with the residual Z2 subgroup ensuring the stability of the dark matter. The flavor symmetry also leads to several predictions including the normal ordering of neutrino masses and “generalized μ- tau reflection symmetry” in leptonic mixing. Additionally, it gives testable predictions for neutrinoless double beta decay and a lower limit on the lightest neutrino mass. Finally, A4 -> Z2 breaking also leaves its imprint on the dark sector and ties it with the neutrino masses and mixing. The model allows only scalar dark matter, whose mass has a theoretical upper limit of less than or similar to 600 GeV, with viable parameter space satisfying all dark matter constraints, available only up to about 80 GeV. Conversely, fermionic dark matter is excluded due to constraints from the neutrino sector. Various aspects of this highly predictive framework can be tested in both current and upcoming neutrino and dark matter experiments.  
  Address [Kumar, Ranjeet; Srivastava, Rahul] Indian Inst Sci Educ & Res Bhopal, Dept Phys, Bhopal Bypass Rd, Bhopal 462066, India, Email: ranjeet20@iiserb.ac.in;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001370444000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6355  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva