|
Abstract |
Three-body dynamics above threshold is required for the reliable extraction of many amplitudes and resonances from experiment and lattice QCD. The S-matrix principle of unitarity can be used to construct dynamical coupled-channel approaches in which three particles scatter off each other, rearranging two-body subsystems by particle exchange. This paper reports the development of a three-body coupled-channel, amplitude including pions and kaons. The unequal-mass amplitude contains two-body S- and P-wave subsystems (“isobars”) of all isospins, I = 0, 1/2, 1,3/2, 2, and it also allows for transitions within a given isobar. The f 0 ( 500 )( 6 ) ,f 0 ( 980 ) , p ( 700 ) ,K * 0 ( 700 )( K ) , and K * ( 892 ) resonances are included, apart from repulsive isobars. Different methods to evaluate the amplitude for physical momenta are discussed. Production amplitudes for a 1 quantum numbers are shown as a proof of principle for the numerical implementation. |
|