toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Bariego-Quintana, A.; Calvo, D.; Cecchini, V.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Lazo, A.; Lessing, N.; Manczak, J.; Palacios Gonzalez, J.; Pastor Gomez, E.J.; Prado, J.; Rahaman, U.; Real, D.; Saina, A.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Atmospheric muons measured with the KM3NeT detectors in comparison with updated numeric predictions Type Journal Article
  Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 84 Issue 7 Pages 696 - 19pp  
  Keywords  
  Abstract The measurement of the flux of muons produced in cosmic ray air showers is essential for the study of primary cosmic rays. Such measurements are important in extensive air shower detectors to assess the energy spectrum and the chemical composition of the cosmic ray flux, complementary to the information provided by fluorescence detectors. Detailed simulations of the cosmic ray air showers are carried out, using codes such as CORSIKA, to estimate the muon flux at sea level. These simulations are based on the choice of hadronic interaction models, for which improvements have been implemented in the post-LHC era. In this work, a deficit in simulations that use state-of-the-art QCD models with respect to the measurement deep underwater with the KM3NeT neutrino detectors is reported. The KM3NeT/ARCA and KM3NeT/ORCA neutrino telescopes are sensitive to TeV muons originating mostly from primary cosmic rays with energies around 10 TeV. The predictions of state-of-the-art QCD models show that the deficit with respect to the data is constant in zenith angle; no dependency on the water overburden is observed. The observed deficit at a depth of several kilometres is compatible with the deficit seen in the comparison of the simulations and measurements at sea level.  
  Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.; Sinopoulou, A.; Melo, I. Tosta e] INFN, Sez Catania, INFN CT, Via Santa Sofia 64, I-95123 Catania, Italy, Email: vladimir.kulikovskiy@ge.infn.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001290702700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6283  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva