toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Aristizabal Sierra, D.; De Romeri, V.; Ternes, C.A. url  doi
openurl 
  Title Reactor neutrino background in next-generation dark matter detectors Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 11 Pages 115026 - 7pp  
  Keywords  
  Abstract Third -generation dark matter detectors will be fully sensitive to the 8 B solar neutrino flux. Because of this, the characterization of such a background has been the subject of extensive analyses over the last few years. In contrast, little is known about the impact of reactor neutrinos. In this paper, we report on the implications of such a flux for dark matter direct -detection searches. We consider five potential detector deployment sites envisioned by the recently established XLZD Consortium: SURF, SNOLAB, Kamioka, LNGS, and Boulby. By using public reactor data, we construct five reactor clusters -involving about 100 currently operating commercial nuclear reactors each -and determine the net neutrino flux at each detector site. Assuming a xenon -based detector and a 50 ton -year exposure, we show that in all cases the neutrino event rate may be sizable, depending on energy recoil thresholds. Of all possible detector sites, SURF and LNGS are those with the smallest reactor neutrino background. On the contrary, SNOLAB and Boulby are subject to the strongest reactor neutrino fluxes, with Kamioka being subject to a more moderate background. Our findings demonstrate that reactor neutrino fluxes should be taken into account in the next round of dark matter searches. We argue that this background may be particularly relevant for directional detectors, provided they meet the requirements we have employed in this analysis.  
  Address [Sierra, D. Aristizabal] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110 V,Ave Espana 1680, Valparaiso, Chile, Email: daristizabal@uliege.be;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001255433200010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6167  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva