toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Wang, D. url  doi
openurl 
  Title Pantheon plus tomography and Hubble tension Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 9 Pages 813 - 12pp  
  Keywords  
  Abstract The recently released Type Ia supernovae (SNe Ia) sample, Pantheon+, is an updated version of Pantheon and has very important cosmological implications. To explore the origin of the enhanced constraining power and internal correlations of datasets in different redshifts, we perform a comprehensively tomographic analysis of the Pantheon+ sample without and with the Cepheid host distance calibration, respectively. Specifically, we take two binning methods to analyze the Pantheon+ sample, i.e., equal redshift interval and equal supernovae number for each bin. For the case of equal redshift interval, after dividing the sample to 10 bins, the first bin in the redshift range z is an element of [0.00122, 0.227235] dominates the constraining power of the whole sample. For the case of equal supernovae number, the first three low redshift bins prefer a large matter fraction Omega(m) and only the sixth bin gives a relatively low cosmic expansion rate H-0. For both binning methods, we find no obvious evidence of evolution of H-0 and Omega(m) at the 2 sigma confidence level. The inclusion of the SHOES calibration can significantly compress the parameter space of background dynamics of the universe in each bin. When not considering the calibration, combining the Pantheon+ sample with cosmic microwave background, baryon acoustic oscillations, cosmic chronometers, galaxy clustering and weak lensing data, we give the strongest 1 sigma constraint H-0 = 67.88 +/- 0.42kms(-1) Mpc(-1). However, the addition of the calibration leads to a global shift of the parameter space from the combined constraint and H-0 = 68.66 +/- 0.42 km s(-1) Mpc(-1), which is inconsistent with the Planck-2018 result at about 2 sigma confidence level.  
  Address [Wang, Deng] Univ Valencia, Inst Fis Corpuscular CSIC, Paterna 46980, Spain, Email: cstar@nao.cas.cn  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001085063100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5749  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva