toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Gomez Ambrosio, R.; ter Hoeve, J.; Madigan, M.; Rojo, J.; Sanz, V. url  doi
openurl 
  Title Unbinned multivariate observables for global SMEFT analyses from machine learning Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 033 - 66pp  
  Keywords SMEFT; Higgs Properties  
  Abstract Theoretical interpretations of particle physics data, such as the determination of the Wilson coefficients of the Standard Model Effective Field Theory (SMEFT), often involve the inference of multiple parameters from a global dataset. Optimizing such interpretations requires the identification of observables that exhibit the highest possible sensitivity to the underlying theory parameters. In this work we develop a flexible open source frame-work, ML4EFT, enabling the integration of unbinned multivariate observables into global SMEFT fits. As compared to traditional measurements, such observables enhance the sensitivity to the theory parameters by preventing the information loss incurred when binning in a subset of final-state kinematic variables. Our strategy combines machine learning regression and classification techniques to parameterize high-dimensional likelihood ratios, using the Monte Carlo replica method to estimate and propagate methodological uncertainties. As a proof of concept we construct unbinned multivariate observables for top-quark pair and Higgs+Z production at the LHC, demonstrate their impact on the SMEFT parameter space as compared to binned measurements, and study the improved constraints associated to multivariate inputs. Since the number of neural networks to be trained scales quadratically with the number of parameters and can be fully parallelized, the ML4EFT framework is well-suited to construct unbinned multivariate observables which depend on up to tens of EFT coefficients, as required in global fits.  
  Address [Ambrosio, Raquel Gomez] Univ Milano Bicocca, Dipartimento Fis G Occhialini, Piazza Sci 3, I-20126 Milan, Italy, Email: raquel.gomezambrosio@unito.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000946004000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5501  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva