toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Dias, A.G.; Leite, J.; Sanchez-Vega, B.L. url  doi
openurl 
  Title Scale-invariant 3-3-1-1 model with B-L symmetry Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 11 Pages 115008 - 16pp  
  Keywords  
  Abstract Motivated by a possible interplay between the mechanism of dynamical symmetry breaking and the seesaw mechanism for generating fermion masses, we present a scale-invariant model that extends the gauge symmetry of the Standard Model electroweak sector to SU(3)L (R) U(1)X (R) U(1)N, with a built-in B – L symmetry. The model is based on the symmetry structure of the known 3-3-1 models and, thus, it relates the number of the three observed fermion generations with the cancellation of gauge anomalies. Symmetry breaking is triggered via the Coleman-Weinberg mechanism, taking into account a minimal set of scalar field multiplets. We establish the stability conditions for the tree-level scalar potential imposing the copositivity criteria and use the method of Gildener-Weinberg for computing the one-loop effective potential when one has multiple scalar fields. With the addition of vectorial fermions, getting their mass mainly through the vacuum expectation value of scalar singlets at 103 TeV, the B – L symmetry leads to textures for the fermion mass matrices, allowing seesaw mechanisms for neutrinos and quarks to take place. In particular, these mechanisms could partly explain the mass hierarchies of the quarks. Once the breakdown of the SU(3)L symmetry is supposed to occur around 10 TeV, the model also predicts new particles with TeV-scale masses, such as a neutral scalar H1, a charged scalar HI, and the gauge bosons Z', W'I, and Y0, that could be searched with the high-luminosity LHC.  
  Address [Dias, Alex G.] Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210580 Santo Andre, SP, Brazil, Email: alex.dias@ufabc.edu.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000897096200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5438  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva