toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Aarrestad, T. et al; Mamuzic, J.; Ruiz de Austri, R. url  doi
openurl 
  Title Benchmark data and model independent event classification for the large hadron collider Type Journal Article
  Year 2022 Publication Scipost Physics Abbreviated Journal SciPost Phys.  
  Volume 12 Issue 1 Pages 043 - 57pp  
  Keywords  
  Abstract We describe the outcome of a data challenge conducted as part of the Dark Machines (https://www.darkmachines.org) initiative and the Les Houches 2019 workshop on Physics at TeV colliders. The challenged aims to detect signals of new physics at the Large Hadron Collider (LHC) using unsupervised machine learning algorithms. First, we propose how an anomaly score could be implemented to define model-independent signal regions in LHC searches. We define and describe a large benchmark dataset, consisting of > 1 billion simulated LHC events corresponding to 10 fb(-1) of proton-proton collisions at a center-of-mass energy of 13 TeV. We then review a wide range of anomaly detection and density estimation algorithms, developed in the context of the data challenge, and we measure their performance in a set of realistic analysis environments. We draw a number of useful conclusions that will aid the development of unsupervised new physics searches during the third run of the LHC, and provide our benchmark dataset for future studies at https://www.phenoMLdata.org. Code to reproduce the analysis is provided at https://github.com/bostdiek/DarkMachines-UnsupervisedChallenge.  
  Address [Aarrestad, Thea; Heinrich, Lukas A.; Jawahar, Pratik; Pierini, Maurizio; Touranakou, Mary; Wozniak, Kinga A.] European Org Nucl Res CERN, CH-1211 Geneva 23, Switzerland  
  Corporate Author Thesis  
  Publisher Scipost Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4653 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000807448000038 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5256  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva