toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Blanton, T.D.; Romero-Lopez, F.; Sharpe, S.R. url  doi
openurl 
  Title Implementing the three-particle quantization condition for pi(+)pi K-+(+) and related systems Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 098 - 49pp  
  Keywords Lattice QCD; Lattice Quantum Field Theory  
  Abstract Recently, the formalism needed to relate the finite-volume spectrum of systems of nondegenerate spinless particles has been derived. In this work we discuss a range of issues that arise when implementing this formalism in practice, provide further theoretical results that can be used to check the implementation, and make available codes for implementing the three-particle quantization condition. Specifically, we discuss the need to modify the upper limit of the cutoff function due to the fact that the left-hand cut in the scattering amplitudes for two nondegenerate particles moves closer to threshold; we describe the decomposition of the three-particle amplitude K-df,K-3 into the matrix basis used in the quantization condition, including both s and p waves, with the latter arising in the amplitude for two nondegenerate particles; we derive the threshold expansion for the lightest three-particle state in the rest frame up to O(1/L-5); and we calculate the leading-order predictions in chiral perturbation theory for K-df,K-3 in the pi(+)pi K-+(+) and pi+K+K+ systems. We focus mainly on systems with two identical particles plus a third that is different (“2+1” systems). We describe the formalism in full detail, and present numerical explorations in toy models, in particular checking that the results agree with the threshold expansion, and making a prediction for the spectrum of pi(+)pi K-+(+) levels using the two- and three-particle interactions predicted by chiral perturbation theory.  
  Address [Blanton, Tyler D.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA, Email: blantonl@umd.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000755933600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5134  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva