toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) IDS Collaboration (Piersa-Silkowska, M. et al); Nacher, E. url  doi
openurl 
  Title First beta-decay spectroscopy of In-135 and new beta-decay branches of In-134 Type Journal Article
  Year 2021 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 101 Issue 4 Pages 044328 - 19pp  
  Keywords  
  Abstract The beta decay of the neutron-rich In-134 and In-135 was investigated experimentally in order to provide new insights into the nuclear structure of the tin isotopes with magic proton number Z = 50 above the N = 82 shell. The beta-delayed gamma-ray spectroscopy measurement was performed at the ISOLDE facility at CERN, where indium isotopes were selectively laser-ionized and on-line mass separated. Three beta-decay branches of In-134 were established, two of which were observed for the first time. Population of neutron-unbound states decaying via gamma rays was identified in the two daughter nuclei of In-134, Sn-134 and Sn-133, at excitation energies exceeding the neutron separation energy by 1 MeV. The beta-delayed one-and two-neutron emission branching ratios of In-134 were determined and compared with theoretical calculations. The beta-delayed one-neutron decay was observed to be dominant beta-decay branch of In-134 even though the Gamow-Teller resonance is located substantially above the two-neutron separation energy of Sn-134. Transitions following the beta decay of In-135 are reported for the first time, including gamma rays tentatively attributed to Sn-135. In total, six new levels were identified in Sn-134 on the basis of the beta gamma gamma coincidences observed in the In-134 and In-135 beta decays. A transition that might be a candidate for deexciting the missing neutron single-particle 13/2(+) state in Sn-133 was observed in both beta decays and its assignment is discussed. Experimental level schemes of Sn-134 and Sn-135 are compared with shell-model predictions. Using the fast timing technique, half-lives of the 2(+), 4(+), and 6(+) levels in Sn-134 were determined. From the lifetime of the 4(+) state measured for the first time, an unexpectedly large B(E2; 4(+) -> 2(+)) transition strength was deduced, which is not reproduced by the shell-model calculations.  
  Address [Piersa-Silkowska, M.; Korgul, A.; Adamska, E.; Fijalkowska, A.; Janas, Z.; Kicinska-Habior, M.; Koszuk, L.; Mazzocchi, C.; Miernik, K.; Silkowski, M.; Stryjczyk, M.] Univ Warsaw, Fac Phys, PL-02093 Warsaw, Poland, Email: monika.piersa@cern.ch;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000712038200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5014  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva