toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Caron, S.; Kim, J.S.; Rolbiecki, K.; Ruiz de Austri, R.; Stienen, B. url  doi
openurl 
  Title The BSM-AI project: SUSY-AI-generalizing LHC limits on supersymmetry with machine learning Type Journal Article
  Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 77 Issue 4 Pages 257 - 25pp  
  Keywords  
  Abstract A key research question at the Large Hadron Collider is the test of models of new physics. Testing if a particular parameter set of such a model is excluded by LHC data is a challenge: it requires time consuming generation of scattering events, simulation of the detector response, event reconstruction, cross section calculations and analysis code to test against several hundred signal regions defined by the ATLAS and CMS experiments. In the BSM-AI project we approach this challenge with a new idea. A machine learning tool is devised to predict within a fraction of a millisecond if a model is excluded or not directly from the model parameters. A first example is SUSY-AI, trained on the phenomenological supersymmetric standard model (pMSSM). About 300,000 pMSSM model sets – each tested against 200 signal regions by ATLAS – have been used to train and validate SUSY-AI. The code is currently able to reproduce theATLAS exclusion regions in 19 dimensions with an accuracy of at least 93%. It has been validated further within the constrained MSSM and the minimal natural supersymmetric model, again showing high accuracy. SUSY-AI and its future BSM derivatives will help to solve the problem of recasting LHC results for any model of new physics. SUSY-AI can be downloaded from http://susyai.hepforge.org/. An on-line interface to the program for quick testing purposes can be found at http://www.susy-ai.org/.  
  Address [Caron, Sascha; Stienen, Bob] Radboud Univ Nijmegen, IMAPP, Nijmegen, Netherlands, Email: krolb@fuw.edu.pl  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000400079300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3097  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva