toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Ren, X.L.; Oset, E.; Alvarez-Ruso, L.; Vicente Vacas, M.J. url  doi
openurl 
  Title Antineutrino induced Lambda(1405) production off the proton Type Journal Article
  Year 2015 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 91 Issue 4 Pages 045201 - 11pp  
  Keywords  
  Abstract We have studied the strangeness-changing antineutrino-induced reactions (v) over bar (l)p -> l(+)phi B, with phi B = K(-)p, (K) over bar (0)n, pi(0)Lambda, pi(0)Sigma(0), eta Lambda, eta Sigma(0), pi(+)Sigma(-), pi(-)Sigma(+), K+Xi(-), and K-0 Xi(0), using a chiral unitary approach. These ten coupled channels are allowed to interact strongly, using a kernel derived from the chiral Lagrangians. This interaction generates two Lambda(1405) poles, leading to a clear single peak in the pi Sigma invariant mass distributions. At backward scattering angles in the center-of-mass frame, (nu) over bar (mu)p -> mu(+)pi(0)Sigma(0) is dominated by the Lambda(1405) state at around 1420 MeV while the lighter state becomes relevant as the angle decreases, leading to an asymmetric line shape. In addition, there are substantial differences in the shape of pi Sigma invariant mass distributions for the three charge channels. If observed, these differences would provide valuable information on a claimed isospin I = 1, strangeness S = -1 baryonic state around 1400 MeV. Integrated cross sections have been obtained for the pi Sigma and (K) over barN channels and the impact of unitarization in the results has been investigated. The number of events with Lambda(1405) excitation in (nu) over bar μp collisions in the recent antineutrino run at the Main Injector Experiment for nu-A (MINER nu A) has also been obtained. We find that this reaction channel is relevant enough to be investigated experimentally and to be taken into account in the simulation models of future experiments with antineutrino beams.  
  Address [Ren, Xiu-Lei] Beihang Univ, Sch Phys & Nucl Energy Engn, Beijing 100191, Peoples R China, Email: xiulei.ren@buaa.edu.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000352190300006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2191  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva