|
Record |
Links |
|
Author |
Pastore, A.; Davesne, D.; Navarro, J. |
|
|
Title |
Linear response of homogeneous nuclear matter with energy density functionals |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Physics Reports |
Abbreviated Journal |
Phys. Rep. |
|
|
Volume |
563 |
Issue |
|
Pages |
1-67 |
|
|
Keywords |
Skyrme functional; Linear response theory; Landau parameters |
|
|
Abstract |
Response functions of infinite nuclear matter with arbitrary isospin asymmetry are studied in the framework of the random phase approximation. The residual interaction is derived from a general nuclear Skyrme energy density functional. Besides the usual central, spin-orbit and tensor terms it could also include other components as new density-dependent terms or three-body terms. Algebraic expressions for the response functions are obtained from the Bethe-Salpeter equation for the particle-hole propagator. Applications to symmetric nuclear matter, pure neutron matter and asymmetric nuclear matter are presented and discussed. Spin-isospin strength functions are analyzed for varying conditions of density, momentum transfer, isospin asymmetry, and temperature for some representative Skyrme functionals. Particular attention is paid to the discussion of instabilities, either real or unphysical, which could manifest in finite nuclei. |
|
|
Address |
[Pastore, A.] Univ Libre Bruxelles, Inst Astron & Astrophys, B-1050 Brussels, Belgium, Email: davesne@ipnl.in2p3.fr |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier Science Bv |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0370-1573 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000350515400001 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
2143 |
|
Permanent link to this record |