|
Abstract |
The γp→K+Λ(1520) reaction mechanism is investigated within a Regge--effective Lagrangian hybrid approach based on our previous study of this reaction [Physical Review C89, 015203 (2014)]. Near threshold and for large K+ angles, both the CLAS and LEPS data can be successfully described by considering the contributions from the contact, t-channel K¯ exchange, u-channel Λ(1115) hyperon pole, and the s-channel nucleon pole and N∗(2120) resonance contributions. However, for higher energies and forward K+ angles, systematic discrepancies with data appear, which hint the possible existence of sizable quark-gluon string mechanism effects. We show how the inclusion of a K¯ Regge--trajectory exchange in the t-channel leads to an efficient description of the Λ(1520) photoproduction channel over the whole energy and angular ranges accessible in the CLAS experiment. |
|