|
Abstract |
Differential measurements of charged particle azimuthal anisotropy are presented for lead-lead collisions at root sNN = 2.76 TeV with the ATLAS detector at the LHC, based on an integrated luminosity of approximately 8 μb(-1). This anisotropy is characterized via a Fourier expansion of the distribution of charged particles in azimuthal angle relative to the reaction plane, with the coefficients v(n) denoting the magnitude of the anisotropy. Significant v(2)-v(6) values are obtained as a function of transverse momentum (0.5 < p(T) < 20 GeV), pseudorapidity (|eta| < 2.5), and centrality using an event plane method. The v(n) values for n >= 3 are found to vary weakly with both eta and centrality, and their p(T) dependencies are found to follow an approximate scaling relation, v(n)(1/n)(p(T)) proportional to v(2)(1/2)(p(T)), except in the top 5% most central collisions. A Fourier analysis of the charged particle pair distribution in relative azimuthal angle (Delta phi = phi(a)-phi(b)) is performed to extract the coefficients v(n,n) = < cos n Delta phi >. For pairs of charged particles with a large pseudorapidity gap (|Delta eta = eta(a) – eta(b)| > 2) and one particle with p(T) < 3 GeV, the v(2,2)-v(6,6) values are found to factorize as v(n,n)(p(T)(a), p(T)(b)) approximate to v(n) (p(T)(a))v(n)(p(T)(b)) in central and midcentral events. Such factorization suggests that these values of v(2,2)-v(6,6) are primarily attributable to the response of the created matter to the fluctuations in the geometry of the initial state. A detailed study shows that the v(1,1)(p(T)(a), p(T)(b)) data are consistent with the combined contributions from a rapidity-even v(1) and global momentum conservation. A two-component fit is used to extract the v(1) contribution. The extracted v(1) isobserved to cross zero at pT approximate to 1.0 GeV, reaches a maximum at 4-5 GeV with a value comparable to that for v(3), and decreases at higher p(T). |
|
|
Address |
[Aad, G.; Ahles, F.; Barber, T.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Christov, A.; Consorti, V.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Rave, T. C.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Weiser, C.; Werner, M.; Wiik-Fuchs, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany |
|