toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Agarwalla, S.K.; Li, T.; Rubbia, A. url  doi
openurl 
  Title An incremental approach to unravel the neutrino mass hierarchy and CP violation with a long-baseline superbeam for large theta(13) Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 154 - 32pp  
  Keywords Neutrino Physics; CP violation  
  Abstract Recent data from long-baseline neutrino oscillation experiments have provided new information on theta(13), hinting that 0.01 less than or similar to sin(2) 2 theta(13) less than or similar to 0.1 at 2 sigma confidence level. In the near future, further confirmation of this result with high significance will have a crucial impact on the optimization of the future long-baseline neutrino oscillation experiments designed to probe the neutrino mass ordering and leptonic CP violation. In this context, we expound in detail the physics reach of an experimental setup where neutrinos produced in a conventional wide-band beam facility at CERN are observed in a proposed Giant Liquid Argon detector at the Pyhasalmi mine, at a distance of 2290 km. Due to the strong matter effects and the high detection efficiency at both the first and second oscillation maxima, this particular setup would have unprecedented sensitivity to the neutrino mass ordering and leptonic CP violation in the light of the emerging hints of large theta(13). With a 10 to 20 kt 'pilot' detector and just a few years of neutrino beam running, the neutrino mass hierarchy could be determined, irrespective of the true values of delta(CP) and the mass hierarchy, at 3 sigma (5 sigma) confidence level if sin(2) 2 theta(13)(true) = 0.05 (0.1). With the same exposure, we start to have 3 sigma sensitivity to CP violation if sin(2) 2 theta(13)(true) > 0.05, in particular testing maximally CP-violating scenarios at a high confidence level. After optimizing the neutrino and anti-neutrino running fractions, we study the performance of the setup as a function of the exposure, identifying three milestones to have roughly 30%, 50% and 70% coverage in delta(CP) (true) for 3 sigma CP violation discovery. For comparison, we also study the CERN to Slanic baseline of 1540 km. This work nicely demonstrates that an incremental program, staged in terms of the exposure, can achieve the desired physics goals within a realistically feasible timescale, and produce significant new results at each stage.  
  Address [Agarwalla, Sanjib Kumar; Li, Tracey] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: Sanjib.Agarwalla@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000305238600074 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1091  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva