|
Abele, H. et al, Algora, A., Gonzalez-Alonso, M., & Novella, P. (2023). Particle physics at the European Spallation Source. Phys. Rep., 1023, 1–84.
Abstract: Presently under construction in Lund, Sweden, the European Spallation Source (ESS) will be the world's brightest neutron source. As such, it has the potential for a particle physics program with a unique reach and which is complementary to that available at other facilities. This paper describes proposed particle physics activities for the ESS. These encompass the exploitation of both the neutrons and neutrinos produced at the ESS for high precision (sensitivity) measurements (searches).
|
|
|
Agaras, M. N. et al, & Fiorini, L. (2023). Laser calibration of the ATLAS Tile Calorimeter during LHC Run 2. J. Instrum., 18(6), P06023–35pp.
Abstract: This article reports the laser calibration of the hadronic Tile Calorimeter of the ATLAS experiment in the LHC Run 2 data campaign. The upgraded Laser II calibration system is described. The system was commissioned during the first LHC Long Shutdown, exhibiting a stability better than 0.8% for the laser light monitoring. The methods employed to derive the detector calibration factors with data from the laser calibration runs are also detailed. These allowed to correct for the response fluctuations of the 9852 photomultiplier tubes of the Tile Calorimeter with a total uncertainty of 0.5% plus a luminosity-dependent sub-dominant term. Finally, we report the regular monitoring and performance studies using laser events in both standalone runs and during proton collisions. These studies include channel timing and quality inspection, and photomultiplier linearity and response dependence on anode current.
|
|
|
AGATA Collaboration(Akkoyun, S. et al), Algora, A., Barrientos, D., Domingo-Pardo, C., Egea, F. J., Gadea, A., et al. (2012). AGATA-Advanced GAmma Tracking Array. Nucl. Instrum. Methods Phys. Res. A, 668, 26–58.
Abstract: The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation gamma-ray spectrometer. AGATA is based on the technique of gamma-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a gamma ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of gamma-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterisation of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximise its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer.
|
|
|
Al Kharusi, S. et al, & Colomer, M. (2021). SNEWS 2.0: a next-generation supernova early warning system for multi-messenger astronomy. New J. Phys., 23(3), 031201–34pp.
Abstract: The next core-collapse supernova in the Milky Way or its satellites will represent a once-in-a-generation opportunity to obtain detailed information about the explosion of a star and provide significant scientific insight for a variety of fields because of the extreme conditions found within. Supernovae in our galaxy are not only rare on a human timescale but also happen at unscheduled times, so it is crucial to be ready and use all available instruments to capture all possible information from the event. The first indication of a potential stellar explosion will be the arrival of a bright burst of neutrinos. Its observation by multiple detectors worldwide can provide an early warning for the subsequent electromagnetic fireworks, as well as signal to other detectors with significant backgrounds so they can store their recent data. The supernova early warning system (SNEWS) has been operating as a simple coincidence between neutrino experiments in automated mode since 2005. In the current era of multi-messenger astronomy there are new opportunities for SNEWS to optimize sensitivity to science from the next galactic supernova beyond the simple early alert. This document is the product of a workshop in June 2019 towards design of SNEWS 2.0, an upgraded SNEWS with enhanced capabilities exploiting the unique advantages of prompt neutrino detection to maximize the science gained from such a valuable event.
|
|
|
Aliaga, R. J. (2017). Real-Time Estimation of Zero Crossings of Sampled Signals for Timing Using Cubic Spline Interpolation. IEEE Trans. Nucl. Sci., 64(8), 2414–2422.
Abstract: A scheme is proposed for hardware estimation of the location of zero crossings of sampled signals with subsample resolution for timing applications, which consists of interpolating the signal with a cubic spline near the zero crossing and then finding the root of the resulting polynomial. An iterative algorithm based on the bisection method is presented that obtains one bit of the result per step and admits an efficient digital implementation using fixed-point representation. In particular, the root estimation iteration involves only two additions, and the initial values can be obtained from finite impulse response (FIR) filters with certain symmetry properties. It is shown that this allows online real-time estimation of timestamps in free-running sampling detector systems with improved accuracy with respect to the more common linear interpolation. The method is evaluated with simulations using ideal and real timing signals, and estimates are given for the resource usage and speed of its implementation.
|
|
|
Aliaga, R. J., Herrero-Bosch, V., Capra, S., Pullia, A., Duenas, J. A., Grassi, L., et al. (2015). Conceptual design of the TRACE detector readout using a compact, dead time-less analog memory ASIC. Nucl. Instrum. Methods Phys. Res. A, 800, 34–39.
Abstract: The new TRacking Array for light Charged particle Ejectiles (TRACE) detector system requires monitorization and sampling of all pulses in a large number of channels with very strict space and power consumption restrictions for the front-end electronics and cabling, Its readout system is to be based on analog memory ASICs with 64 channels each that sample a 1 μs window of the waveform of any valid pulses at 200 MHz while discarding any other signals and are read out at 50 MHz with external ADC digitization. For this purpose, a new, compact analog memory architecture is described that allows pulse capture with zero dead time in any channel while vastly reducing the total number of storage cells, particularly for large amounts of input channels. This is accomplished by partitioning the typical Switched Capacitor Array structure into two pipelined, asymmetric stages and introducing FIFO queue-like control circuitry for captured data, achieving total independence between the capture and readout operations.
|
|
|
Angles-Castillo, A., Perucho, M., Marti, J. M., & Laing, R. A. (2021). On the deceleration of Fanaroff-Riley Class I jets: mass loading of magnetized jets by stellar winds. Mon. Not. Roy. Astron. Soc., 500(1), 1512–1530.
Abstract: In this paper, we present steady-state relativistic magnetohydrodynamic simulations that include a mass-load term to study the process of jet deceleration. The mass load mimics the injection of a proton-electron plasma from stellar winds within the host galaxy into initially pair plasma jets, with mean stellar mass-losses ranging from 10(-14) to 10(-9) M-circle dot yr(-1). The spatial jet evolution covers similar to 500 pc from jet injection in the grid at 10 pc from the jet nozzle. Our simulations use a relativistic gas equation of state and a pressure profile for the ambient medium. We compare these simulations with previous dynamical simulations of relativistic, non-magnetized jets. Our results show that toroidal magnetic fields can prevent fast jet expansion and the subsequent embedding of further stars via magnetic tension. In this sense, magnetic fields avoid a runaway deceleration process. Furthermore, when the mass load is large enough to increase the jet density and produce fast, differential jet expansion, the conversion of magnetic energy flux into kinetic energy flux (i.e. magnetic acceleration), helps to delay the deceleration process with respect to non-magnetized jets. We conclude that the typical stellar population in elliptical galaxies cannot explain jet deceleration in classical Fanaroff-Riley type I radio galaxies. However, we observe a significant change in the jet composition, thermodynamical parameters, and energy dissipation along its evolution, even for moderate values of the mass load.
|
|
|
Araujo Filho, A. A., Reis, J. A. A. S., & Ghosh, S. (2023). Quantum gases on a torus. Int. J. Geom. Methods Mod. Phys., 20(10), 2350178–19pp.
Abstract: This paper is aimed at studying the thermodynamic properties of quantum gases confined to a torus. To do that, we consider noninteracting gases within the grand canonical ensemble formalism. In this context, fermions and bosons are taken into account and the calculations are properly provided in both analytical and numerical manners. In particular, the system turns out to be sensitive to the topological parameter under consideration: the winding number. Furthermore, we also derive a model in order to take into account interacting quantum gases. To corroborate our results, we implement such a method for two different scenarios: a ring and a torus.
|
|
|
Araujo Filho, A. A., Zare, S., Porffrio, P. J., Kriz, J., & Hassanabadi, H. (2023). Thermodynamics and evaporation of a modified Schwarzschild black hole in a non-commutative gauge theory. Phys. Lett. B, 838, 137744–9pp.
Abstract: In this work, we study the thermodynamic properties on a non-commutative background via gravitational gauge field potentials. This procedure is accomplished after contracting de Sitter (dS) group, SO(4, 1), with the Poincare group, ISO(3, 1). Particularly, we focus on a static spherically symmetric black hole. In this manner, we calculate the modified Hawking temperature and the other deformed thermal state quantities, namely, entropy, heat capacity, Helmholtz free energy and pressure. Finally, we also investigate the black hole evaporation process in such a context.
|
|
|
ATLAS Collaboration(Aad, G. et al), Alvarez Piqueras, D., Barranco Navarro, L., Cabrera Urban, S., Castillo Gimenez, V., Cerda Alberich, L., et al. (2016). A search for an excited muon decaying to a muon and two jets in pp collisions at root s=8 TeV with the ATLAS detector. New J. Phys., 18, 073021–21pp.
Abstract: Anew search signature for excited leptons is explored. Excited muons are sought in the channel pp -> μmu* -> μμjet jet, assuming both the production and decay occur via a contact interaction. The analysis is based on 20.3 fb(-1) of pp collision data at a centre-of-mass energy of root s = 8 TeV taken with the ATLAS detector at the large hadron collider. No evidence of excited muons is found, and limits are set at the 95% confidence level on the cross section times branching ratio as a function of the excited-muon mass m(mu)*. For m(mu)* between 1.3 and 3.0 TeV, the upper limit on sigma B(mu* -> μq (q) over bar) is between 0.6 and 1 fb. Limits on sB are converted to lower bounds on the compositeness scale Lambda. In the limiting case Lambda = m(mu)*, excited muons with a mass below 2.8 TeV are excluded. With the same model assumptions, these limits at larger mu* masses improve upon previous limits from traditional searches based on the gauge-mediated decay mu* -> μgamma.
|
|