Home | << 1 2 3 4 5 6 7 8 9 10 >> [11–20] |
![]() |
Pastore, A., Tarpanov, D., Davesne, D., & Navarro, J. (2015). Spurious finite-size instabilities in nuclear energy density functionals: Spin channel. Phys. Rev. C, 92(2), 024305–9pp.
Abstract: Background: It has been recently shown that some Skyrme functionals can lead to nonconverging results in the calculation of some properties of atomic nuclei. A previous study has pointed out a possible link between these convergence problems and the appearance of finite-size instabilities in symmetric nuclear matter (SNM) around saturation density. Purpose: We show that the finite-size instabilities not only affect the ground-state properties of atomic nuclei, but they can also influence the calculations of vibrational excited states in finite nuclei. Method: We perform systematic fully-self consistent random phase approximation (RPA) calculations in spherical doubly magic nuclei. We employ several Skyrme functionals and vary the isoscalar and isovector coupling constants of the time-odd term s . Delta s. We determine critical values of these coupling constants beyond which the RPA calculations do not converge because the RPA stability matrix becomes nonpositive. Results: By comparing the RPA calculations of atomic nuclei with those performed for SNM we establish a correspondence between the critical densities in the infinite system and the critical coupling constants for which the RPA calculations do not converge. Conclusions: We find a quantitative stability criterion to detect finite-size instabilities related to the spin s . Delta s term of a functional. This criterion could be easily implemented in the standard fitting protocols to fix the coupling constants of the Skyrme functional.
|
Pastore, A., Davesne, D., & Navarro, J. (2015). Linear response of homogeneous nuclear matter with energy density functionals. Phys. Rep., 563, 1–67.
Abstract: Response functions of infinite nuclear matter with arbitrary isospin asymmetry are studied in the framework of the random phase approximation. The residual interaction is derived from a general nuclear Skyrme energy density functional. Besides the usual central, spin-orbit and tensor terms it could also include other components as new density-dependent terms or three-body terms. Algebraic expressions for the response functions are obtained from the Bethe-Salpeter equation for the particle-hole propagator. Applications to symmetric nuclear matter, pure neutron matter and asymmetric nuclear matter are presented and discussed. Spin-isospin strength functions are analyzed for varying conditions of density, momentum transfer, isospin asymmetry, and temperature for some representative Skyrme functionals. Particular attention is paid to the discussion of instabilities, either real or unphysical, which could manifest in finite nuclei.
Keywords: Skyrme functional; Linear response theory; Landau parameters
|
Papoulias, D. K., & Kosmas, T. S. (2015). Neutrino transition magnetic moments within the non-standard neutrino-nucleus interactions. Phys. Lett. B, 747, 454–459.
Abstract: Tensorial non-standard neutrino interactions are studied through a combined analysis of nuclear structure calculations and a sensitivity chi(2)-type of neutrino events expected to be measured at the COHERENT experiment, recently planned to operate at the Spallation Neutron Source (Oak Ridge). Potential sizeable predictions on transition neutrino magnetic moments and other electromagnetic parameters, such as neutrino milli-charges, are also addressed. The non-standard neutrino-nucleus processes, explored from nuclear physics perspectives within the context of quasi-particle random phase approximation, are exploited in order to estimate the expected number of events originating from vector and tensor exotic interactions for the case of reactor neutrinos, studied with TEXONO and GEMMA neutrino detectors.
|
PANDA Collaboration(Singh, B. P. et al), Diaz, J., & Ortiz, A. (2015). Experimental access to Transition Distribution Amplitudes with the PANDA experiment at FAIR. Eur. Phys. J. A, 51(8), 107–19pp.
Abstract: Baryon-to-meson Transition Distribution Amplitudes (TDAs) encoding valuable new information on hadron structure appear as building blocks in the collinear factorized description for several types of hard exclusive reactions. In this paper, we address the possibility of accessing nucleon-to-pion (pi N) TDAs from (p) over barp -> e(+)e(-)pi(0) reaction with the future PANDA detector at the FAIR facility. At high center-of-mass energy and high invariant mass squared of the lepton pair q(2), the amplitude of the signal channel (p) over barp -> e(+)e(-)pi(0) admits a QCD factorized description in terms of pi N TDAs and nucleon Distribution Amplitudes (DAs) in the forward aid backward kinematic regimes. Assuming the validity of this factorized description, we perform feasibility studies for measuring (p) over barp -> e(+)e(-)pi(0) with the PANDA detector. Detailed simulations on signal reconstruction efficiency as well as on rejection of the most severe background channel, i.e. (p) over barp -> pi(+)pi(-)pi(0) were performed for the center-of-mass energy squared s = 5 GeV2 and s = 10 GeV2, in the kinematic regions 3.0 < q(2) < 4.3 GeV2 and 5 < q(2) < 9 GeV2, respectively, with a neutral pion scattered in the forward or backward cone vertical bar cos theta(pi 0)vertical bar > 0.5 in the proton-antiproton center-of-mass frame. Results of the simulation show that the particle identification capabilities of the PANDA detector will allow to achieve a background rejection factor of 5 . 10(7) (1 . 10(7)) at low (high) q(2) for s = 5 GeV2, and of 1 . 10(8) (6 . 10(6)) at low (high) q(2) for s = 10 GeV2, while keeping the signal reconstruction efficiency at around 40%. At both energies, a clean lepton signal can be reconstructed with the expected statistics corresponding to 2 of integrated luminosity. The cross sections obtained from the simulations are used to show that a test of QCD collinear factorization can be done at the lowest order by measuring scaling laws and angular distributions. The future measurement of the signal channel cross section with PANDA will provide a new test of the perturbative QCD description of a novel class of hard exclusive reactions and will open the possibility of experimentally accessing pi N TDAs.
|
Palomo, R., Pujades, M. C., Gimeno-Olmos, J., Carmona, V., Lliso, F., Candela-Juan, C., et al. (2015). Evaluation of lens absorbed dose with Cone Beam IGRT procedures. J. Radiol. Prot., 35(4), N33–N41.
Abstract: The purpose of this work is to evaluate the absorbed dose to the eye lenses due to the cone beam computed tomography (CBCT) system used to accurately position the patient during head-and-neck image guided procedures. The on-board imaging (OBI) systems (v. 1.5) of Clinac iX and TrueBeam (Varian) accelerators were used to evaluate the imparted dose to the eye lenses and some additional points of the head. All CBCT scans were acquired with the Standard-Dose Head protocol from Varian. Doses were measured using thermoluminescence dosimeters (TLDs) placed in an anthropomorphic phantom. TLDs were calibrated at the beam quality used to reduce their energy dependence. Average dose to the lens due to the OBI systems of the Clinac iX and the TrueBeam were 0.71 +/- 0.07 mGy/CBCT and 0.70 +/- 0.08 mGy/CBCT, respectively. The extra absorbed dose received by the eye lenses due to one CBCT acquisition with the studied protocol is far below the 500 mGy threshold established by ICRP for cataract formation (ICRP 2011 Statement on Tissue Reactions). However, the incremental effect of several CBCT acquisitions during the whole treatment should be taken into account.
Keywords: IGRT; CBCT; lens absorbed dose; TLD
|
Palomares-Ruiz, S., Vincent, A. C., & Mena, O. (2015). Spectral analysis of the high-energy IceCube neutrinos. Phys. Rev. D, 91(10), 103008–28pp.
Abstract: A full energy and flavor-dependent analysis of the three-year high-energy IceCube neutrino events is presented. By means of multidimensional fits, we derive the current preferred values of the high-energy neutrino flavor ratios, the normalization and spectral index of the astrophysical fluxes, and the expected atmospheric background events, including a prompt component. A crucial assumption resides on the choice of the energy interval used for the analyses, which significantly biases the results. When restricting ourselves to the similar to 30 TeV-3 PeV energy range, which contains all the observed IceCube events, we find that the inclusion of the spectral information improves the fit to the canonical flavor composition at Earth, (1: 1: 1)(circle plus), with respect to a single-energy bin analysis. Increasing both the minimum and the maximum deposited energies has dramatic effects on the reconstructed flavor ratios as well as on the spectral index. Imposing a higher threshold of 60 TeV yields a slightly harder spectrum by allowing a larger muon neutrino component, since above this energy most atmospheric tracklike events are effectively removed. Extending the high-energy cutoff to fully cover the Glashow resonance region leads to a softer spectrum and a preference for tau neutrino dominance, as none of the expected electron (anti) neutrino induced showers have been observed so far. The lack of showers at energies above 2 PeV may point to a broken power-law neutrino spectrum. Future data may confirm or falsify whether the recently discovered high-energy neutrino fluxes and the long-standing detected cosmic rays have a common origin.
|
Pallis, C., & Shafi, Q. (2015). Gravity waves from non-minimal quadratic inflation. J. Cosmol. Astropart. Phys., 03(3), 023–31pp.
Abstract: We discuss non-minimal quadratic inflation in supersymmetric (SUSY) and non-SUSY models which entails a linear coupling of the inflaton to gravity. Imposing a lower bound on the parameter c(R), involved in the coupling between the inflaton and the Ricci scalar curvature, inflation can be attained even for subplanckian values of the inflaton while the corresponding effective theory respects the perturbative unitarity up to the Planck scale. Working in the non-SUSY context we also consider radiative corrections to the inflationary potential due to a possible coupling of the inflaton to bosons or fermions. We find ranges of the parameters, depending mildly on the renormalization scale, with adjustable values of the spectral index n(s), tensor-to-scalar ratio r similar or equal to (2 – 4) . 10(-3), and an inflaton mass close to 3 . 10 (13) GeV. In the SUSY framework we employ two gauge singlet chiral superfields, a logarithmic Kahler potential including all the allowed terms up to fourth order in powers of the various fields, and determine uniquely the superpotential by applying a continuous R and a global U(1) symmetry. When the Kahler manifold exhibits a no-scale-type symmetry, the model predicts n(s) similar or equal to 0.963 and r similar or equal to 0.004. Beyond no-scale SUGRA, n(s) and r depend crucially on the coefficient involved in the fourth order term, which mixes the inflaton with the accompanying non-inflaton field in the Kahler potential, and the prefactor encountered in it. Increasing slightly the latter above (-3), an efficient enhancement of the resulting r can be achieved putting it in the observable range. The inflaton mass in the last case is confined in the range (5 – 9) . 10(13) GeV.
|
Pallis, C. (2015). Kinetically modified nonminimal chaotic inflation. Phys. Rev. D, 91(12), 123508–6pp.
Abstract: We consider supersymmetric (SUSY) and non-SUSY models of chaotic inflation based on the phi(n) potential with 2 <= n <= 6. We show that the coexistence of a nonminimal coupling to gravity f(R) = 1 + c(R)phi(n/2) with a kinetic mixing of the form f(K) = c(K)f(R)(m) can accommodate inflationary observables favored by the BICEP2/Keck Array and Planck results for 0 <= m <= 4 and 2.5 x 10(-4) <= r(RK) = c(R)/c(K)(n/4) <= 1, where the upper limit is not imposed for n 2. Inflation can be attained for sub-Planckian inflaton values with the corresponding effective theories retaining the perturbative unitarity up to the Planck scale.
|
Pajtler, M. V., Szilner, S., Corradi, L., de Angelis, G., Fioretto, E., Gadea, A., et al. (2015). Selective properties of neutron transfer reactions in the Zr-90+Pb-208 system for the population of excited states in zirconium isotopes. Nucl. Phys. A, 941, 273–292.
Abstract: Nuclei produced via multineutron transfer channels have been studied in Zr-90 + Pb-208 close to the Coulomb barrier energy in a fragment-gamma coincident measurement employing the PRISMA magnetic spectrometer coupled to the CLARA gamma-array. The selective properties of the reaction mechanism have been discussed in terms of states and their strength excited in the neutron transfer channels leading to Zr89-94 isotopes. A strong population of yrast states, with energies up to similar to 7.5 MeV has been observed.
|
Ortega, P. G., Torres-Espallardo, I., Cerutti, F., Ferrari, A., Gillam, J. E., Lacasta, C., et al. (2015). Noise evaluation of Compton camera imaging for proton therapy. Phys. Med. Biol., 60(5), 1845–1863.
Abstract: Compton Cameras emerged as an alternative for real-time dose monitoring techniques for Particle Therapy (PT), based on the detection of prompt-gammas. As a consequence of the Compton scattering process, the gamma origin point can be restricted onto the surface of a cone (Compton cone). Through image reconstruction techniques, the distribution of the gamma emitters can be estimated, using cone-surfaces backprojections of the Compton cones through the image space, along with more sophisticated statistical methods to improve the image quality. To calculate the Compton cone required for image reconstruction, either two interactions, the last being photoelectric absorption, or three scatter interactions are needed. Because of the high energy of the photons in PT the first option might not be adequate, as the photon is not absorbed in general. However, the second option is less efficient. That is the reason to resort to spectral reconstructions, where the incoming. energy is considered as a variable in the reconstruction inverse problem. Jointly with prompt gamma, secondary neutrons and scattered photons, not strongly correlated with the dose map, can also reach the imaging detector and produce false events. These events deteriorate the image quality. Also, high intensity beams can produce particle accumulation in the camera, which lead to an increase of random coincidences, meaning events which gather measurements from different incoming particles. The noise scenario is expected to be different if double or triple events are used, and consequently, the reconstructed images can be affected differently by spurious data. The aim of the present work is to study the effect of false events in the reconstructed image, evaluating their impact in the determination of the beam particle ranges. A simulation study that includes misidentified events (neutrons and random coincidences) in the final image of a Compton Telescope for PT monitoring is presented. The complete chain of detection, from the beam particle entering a phantom to the event classification, is simulated using FLUKA. The range determination is later estimated from the reconstructed image obtained from a two and three-event algorithm based on Maximum Likelihood Expectation Maximization. The neutron background and random coincidences due to a therapeutic-like time structure are analyzed for mono-energetic proton beams. The time structure of the beam is included in the simulations, which will affect the rate of particles entering the detector.
Keywords: proton therapy; Compton camera; Monte Carlo methods; FLUKA; prompt gamma; range verification; MLEM
|