Abbate, R., Fickinger, M., Hoang, A. H., Mateu, V., & Stewart, I. W. (2012). Precision thrust cumulant moments at N^3LL. Phys. Rev. D, 86(9), 094002–22pp.
Abstract: We consider cumulant moments (cumulants) of the thrust distribution using predictions of the full spectrum for thrust including O(alpha(3)(s)) fixed order results, resummation of singular (NLL)-L-3 logarithmic contributions, and a class of leading power corrections in a renormalon-free scheme. From a global fit to the first thrust moment we extract the strong coupling and the leading power correction matrix element Omega(1). We obtain alpha(s)(m(Z)) = 0.1140 +/- (0.0004)(exp) +/- (0.0013)(hadr) +/- (0.0007)(pert), where the 1-sigma uncertainties are experimental, from hadronization (related to Omega(1)) and perturbative, respectively, and Omega(1) = 0.377 +/- (0.044)(exp) +/- (0.039)(pert) GeV. The nth thrust cumulants for n >= 2 are completely insensitive to Omega(1), and therefore a good instrument for extracting information on higher order power corrections, Omega'(n)/Q(n), from moment data. We find ((Omega) over tilde '2)(1/2) = 0.74 +/- (0.11)(exp) +/- (0.09)(pert) GeV.
|
Aceti, F., Liang, W. H., Oset, E., Wu, J. J., & Zou, B. S. (2012). Isospin breaking and f(0)(980)-a(0)(980) mixing in the eta(1405) -> pi(0)f(0)(980) reaction. Phys. Rev. D, 86(11), 114007–11pp.
Abstract: We make a theoretical study of the eta(1405) -> pi(0)f(0)(980) and eta(1405) -> pi(0)a(0)(980) reactions with an aim to determine the isospin violation and the mixing of the f(0)(980) and a(0)(980) resonances. We make use of the chiral unitary approach where these two resonances appear as composite states of two mesons, dynamically generated by the meson-meson interaction provided by chiral Lagrangians. We obtain a very narrow shape for the f(0)(980) production in agreement with a BES experiment. As to the amount of isospin violation, or f(0)(980) and a(0)(980) mixing, assuming constant vertices for the primary eta(1405) -> pi K-0 (K) over bar and eta(1405) -> pi(0)pi(0)eta production, we find results which are much smaller than found in the recent experimental BES paper, but consistent with results found in two other related BES experiments. We have tried to understand this anomaly by assuming an I = 1 mixture in the eta(1405) wave function, but this leads to a much bigger width of the f(0)(980) mass distribution than observed experimentally. The problem is solved by using the primary production driven by eta' -> K*(K) over bar followed by K* -> K pi, which induces an extra singularity in the loop functions needed to produce the f(0)(980) and a(0)(980) resonances. Improving upon earlier work along the same lines, and using the chiral unitary approach, we can now predict absolute values for the ratio Gamma(pi(0), pi(+)pi(-))/Gamma(pi(0), pi(0)eta) which are in fair agreement with experiment. We also show that the same results hold if we had the eta(1475) resonance or a mixture of these two states, as seems to be the case in the BES experiment.
|
Aceti, F., Molina, R., & Oset, E. (2012). X(3872) -> J/psi gamma decay in the D(D)over-bar* molecular picture. Phys. Rev. D, 86(11), 113007–13pp.
Abstract: From a picture of the X(3872) where the resonance is a bound state of D (D) over bar*- c.c., we evaluate the decay width into the J/psi gamma channel, which is sensitive to the internal structure of this state. For this purpose we evaluate the loops through which the X(3872) decays into its components, and the J/psi and the photon are radiated from these components. We use the local hidden gauge approach extrapolated to SU(4) with a particular SU(4) breaking. The radiative decay involves anomalous couplings, and we obtain acceptable values which are compared to experiments and results of other calculations. Simultaneously, we evaluate the decay rate for the X(3872) into J/psi omega and J/psi rho, and the results obtained for the ratio of these decay widths are compatible with the experiment. We also show that considering only the (D) over bar D-0*(0) – c.c. component in the radiative decay reduces the partial decay width in more than three orders of magnitude, in large discrepancy with experiment.
|
Aceti, F., & Oset, E. (2012). Wave functions of composite hadron states and relationship to couplings of scattering amplitudes for general partial waves. Phys. Rev. D, 86(1), 014012–12pp.
Abstract: In this paper we present the connection between scattering amplitudes in momentum space and wave functions in coordinate space, generalizing previous work done for s-waves to any partial wave. The relationship to the wave function of the residues of the scattering amplitudes at the pole of bound states or resonances is investigated in detail. A sum rule obtained for the couplings provides a generalization to coupled channels, any partial wave and bound or resonance states, of Weinberg's compositeness condition, which was only valid for weakly bound states in one channel and s-wave. An example, requiring only experimental data, is shown for the rho meson indicating that it is not a composite particle of pi pi and K (K) over bar but something else.
|
Agarwalla, S. K., & Hernandez, P. (2012). Probing the neutrino mass hierarchy with Super-Kamiokande. J. High Energy Phys., 10(10), 086–14pp.
Abstract: We show that for recently discovered large values of theta(13), a superbeam with an average neutrino energy of similar to 5 GeV, such as those being proposed at CERN, if pointing to Super-Kamiokande (L similar or equal to 8770 km), could reveal the neutrino mass hierarchy at 5 sigma in less than two years irrespective of the true hierarchy and CP phase. The measurement relies on the near resonant matter effect in the nu(mu) -> nu(e) oscillation channel, and can be done counting the total number of appearance events with just a neutrino beam.
|
Agarwalla, S. K., Li, T., & Rubbia, A. (2012). An incremental approach to unravel the neutrino mass hierarchy and CP violation with a long-baseline superbeam for large theta(13). J. High Energy Phys., 05(5), 154–32pp.
Abstract: Recent data from long-baseline neutrino oscillation experiments have provided new information on theta(13), hinting that 0.01 less than or similar to sin(2) 2 theta(13) less than or similar to 0.1 at 2 sigma confidence level. In the near future, further confirmation of this result with high significance will have a crucial impact on the optimization of the future long-baseline neutrino oscillation experiments designed to probe the neutrino mass ordering and leptonic CP violation. In this context, we expound in detail the physics reach of an experimental setup where neutrinos produced in a conventional wide-band beam facility at CERN are observed in a proposed Giant Liquid Argon detector at the Pyhasalmi mine, at a distance of 2290 km. Due to the strong matter effects and the high detection efficiency at both the first and second oscillation maxima, this particular setup would have unprecedented sensitivity to the neutrino mass ordering and leptonic CP violation in the light of the emerging hints of large theta(13). With a 10 to 20 kt 'pilot' detector and just a few years of neutrino beam running, the neutrino mass hierarchy could be determined, irrespective of the true values of delta(CP) and the mass hierarchy, at 3 sigma (5 sigma) confidence level if sin(2) 2 theta(13)(true) = 0.05 (0.1). With the same exposure, we start to have 3 sigma sensitivity to CP violation if sin(2) 2 theta(13)(true) > 0.05, in particular testing maximally CP-violating scenarios at a high confidence level. After optimizing the neutrino and anti-neutrino running fractions, we study the performance of the setup as a function of the exposure, identifying three milestones to have roughly 30%, 50% and 70% coverage in delta(CP) (true) for 3 sigma CP violation discovery. For comparison, we also study the CERN to Slanic baseline of 1540 km. This work nicely demonstrates that an incremental program, staged in terms of the exposure, can achieve the desired physics goals within a realistically feasible timescale, and produce significant new results at each stage.
|
Agarwalla, S. K., Lombardi, F., & Takeuchi, T. (2012). Constraining non-standard interactions of the neutrino with Borexino. J. High Energy Phys., 12(12), 079–21pp.
Abstract: We use the Borexino 153.6 ton.year data to place constraints on non-standard neutrino-electron interactions, taking into account the uncertainties in the Be-7 solar neutrino flux and the mixing angle theta(23), and backgrounds due to Kr-85 and Bi-210 beta-decay. We find that the bounds are comparable to existing bounds from all other experiments. Further improvement can be expected in Phase II of Borexino due to the reduction in the Kr-85 background.
|
Agarwalla, S. K., Prakash, S., Raut, S. K., & Sankar, S. U. (2012). Potential of optimized NOvA for large theta(13) and combined performance with a LArTPC & T2K. J. High Energy Phys., 12(12), 075–21pp.
Abstract: NO nu A experiment has reoptimized its event selection criteria in light of the recently measured moderately large value of theta(13). We study the improvement in the sensitivity to the neutrino mass hierarchy and to leptonic CP violation due to these new features. For favourable values of delta(CP), NO nu A sensitivity to mass hierarchy and leptonic CP violation is increased by 20%. Addition of 5 years of neutrino data from T2K to NO nu A more than doubles the range of delta(CP) for which the leptonic CP violation can be discovered,compared to stand alone NO nu A. But for unfavourable values of delta(CP), the combination of NO nu A and T2K are not enough to provide even a 90% C.L. hint of hierarchy discovery. Therefore,we further explore the improvement in the hierarchy and CP violation sensitivities due to the addition of a 10 kt liquid argon detector placed close to NO nu A site. The capabilities of such a detector are equivalent to those of NO nu A in all respects. We find that combined data from 10 kt liquid argon detector (3 years of nu + 3 years of (nu) over bar run), NO nu A (6 years of nu + 6 years of nu run) and T2K (5 years of nu run) can give a close to 2 sigma hint of hierarchy discovery for all values of delta(CP). With this combined data,we can achieve CP violation discovery at 95% C.L. for roughly 60% values of delta(CP).
|
AGATA Collaboration(Akkoyun, S. et al), Algora, A., Barrientos, D., Domingo-Pardo, C., Egea, F. J., Gadea, A., et al. (2012). AGATA-Advanced GAmma Tracking Array. Nucl. Instrum. Methods Phys. Res. A, 668, 26–58.
Abstract: The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation gamma-ray spectrometer. AGATA is based on the technique of gamma-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a gamma ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of gamma-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterisation of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximise its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer.
|
AGATA Collaboration(Soderstrom, P. A. et al), & Gadea, A. (2012). High-spin structure in K-40. Phys. Rev. C, 86(5), 054320–9pp.
Abstract: High-spin states of K-40 have been populated in the fusion-evaporation reaction C-12(Si-30,np)K-40 and studied by means of gamma-ray spectroscopy techniques using one triple-cluster detector of the Advanced Gamma Tracking Array at the Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro. Several states with excitation energy up to 8 MeV and spin up to 10(-) have been discovered. These states are discussed in terms of J = 3 and T = 0 neutron-proton hole pairs. Shell-model calculations in a large model space have shown good agreement with the experimental data for most of the energy levels. The evolution of the structure of this nucleus is here studied as a function of excitation energy and angular momentum.
|