Vijande, J., Carmona, V., Lliso, F., Ballester, F., & Perez-Calatayud, J. (2024). An efficient component of the redundancy calibration program to ensure equipment stability by assaying HDR Ir-192 sources at the time of replacement. J. Appl. Clin. Med. Phys, 25(12), e14509–5pp.
Abstract: BackgroundBrachytherapy (BT) treatments involving temporary high-dose rate (HDR) sources are extensively employed in clinical practice. Ensuring the consistency of all measurement equipment at the hospital level is crucial, requiring a robust redundancy and consistency program. This enables the institution to verify the stability of the dosimetry system over time.PurposeTo describe, justify, and analyze a component of the redundancy program of the calibration protocols followed by the Radiotherapy Department of the Hospital Universitari i Polit & egrave;cnic La Fe (Val & egrave;ncia, Spain) during the last 10 years for the case of HDR BT as an additional component to ensure long term stability of the measurement equipment.MethodsAt the time the HDR BT source is replaced, its Air Kerma Strength (SK) is measured. By comparing this value with the one obtained at the time of installation (corrected by decay), a clear determination of the stability of the measurement equipment can be performed.ResultsDifference between SK,vendor and SK,hosp as a function of the measurement date is reported for a 10 years' period. All measurements are well within the +/- 3% tolerance level recommended in current international guidelines. Percentage differences of SK,hosp values at the time of replacement compared to SK,hosp ones at the time when the source was installed are within the +/- 0.5% range, reflecting oscillations around a null deviation.ConclusionsThe method proposed allows any hospital to ensure a redundancy component of the long-term stability of all equipment involved in BT measurements in a very simple and time efficient manner. Additionally, it enables the hospital to maintain a detailed log of historical differences, facilitating the identification and correction of potential systematic deviations over time.
|
Vijande, J., Granero, D., Perez-Calatayud, J., & Ballester, F. (2013). Monte Carlo dosimetric study of the medium dose rate CSM40 source. Appl. Radiat. Isot., 82, 283–288.
Abstract: The Cs-137 medium dose rate (MDR) CSM40 source model (Eckert & Ziegler BEBIG, Germany) is in clinical use but no dosimetric dataset has been published. This study aims to obtain dosimetric data for the CSM40 source for its use in clinical practice as required by the American Association of Physicists in Medicine (AAPM) and the European Society for Radiotherapy and Oncology (ESTRO). Penelope2008 and Geant4 Monte Carlo codes were used to characterize this source dosimetrically. It was located in an unbounded water phantom with composition and mass density as recommended by AAPM and ESTRO. Due to the low photon energies of Cs-137, absorbed dose was approximated by collisional kerma. Additional simulations were performed to obtain the air-kerma strength, sic. Mass-energy absorption coefficients in water and air were consistently derived and used to calculate collisional kerma. Results performed with both radiation transport codes showed agreement typically within 0.05%. Dose rate constant, radial dose function and anisotropy function are provided for the CSM40 and compared with published data for other commercially available Cs-137 sources. An uncertainty analysis has been performed. The data provided by this study can be used as input data and verification in the treatment planning systems. (C) 2013 Elsevier Ltd. All rights reserved.
|
Vijande, J., Tedgren, A. C., Ballester, F., Baltas, D., Papagiannis, P., Rivard, M. J., et al. (2021). Source strength determination in iridium-192 and cobalt-60 brachytherapy: A European survey on the level of agreement between clinical measurements and manufacturer certificates. Phys. Imag. Radiat. Oncol., 19, 108–111.
Abstract: Background and purpose: Brachytherapy treatment outcomes depend on the accuracy of the delivered dose distribution, which is proportional to the reference air-kerma rate (RAKR). Current societal recommendations require the medical physicist to compare the measured RAKR values to the manufacturer source calibration certificate. The purpose of this work was to report agreement observed in current clinical practice in the European Union. Materials and methods: A European survey was performed for high- and pulsed-dose-rate (HDR and PDR) highenergy sources (Ir-192 and Co-60), to quantify observed RAKR differences. Medical physicists at eighteen hospitals from eight European countries were contacted, providing 1,032 data points from 2001 to 2020. Results: Over the survey period, 77% of the Ir-192 measurements used a well chamber instead of the older Krieger phantom method. Mean differences with the manufacturer calibration certificate were 0.01% +/- 1.15% for Ir-192 and -0.1% +/- 1.3% for Co-60. Over 95% of RAKR measurements in the clinic were within 3% of the manufacturer calibration certificate. Conclusions: This study showed that the agreement level was generally better than that reflected in prior societal recommendations positing 5%. Future recommendations on high-energy HDR and PDR source calibrations in the clinic may consider tightened agreements levels.
|