| 
Citations
 | 
   web
Hirn, J., Garcia, J. E., Montesinos-Navarro, A., Sanchez-Martin, R., Sanz, V., & Verdu, M. (2022). A deep Generative Artificial Intelligence system to predict species coexistence patterns. Methods Ecol. Evol., 13, 1052–1061.
toggle visibility
Conde, D., Castillo, F. L., Escobar, C., García, C., Garcia Navarro, J. E., Sanz, V., et al. (2023). Forecasting Geomagnetic Storm Disturbances and Their Uncertainties Using Deep Learning. Space Weather, 21(11), e2023SW003474–27pp.
toggle visibility
Garcia Navarro, J. E., Fernandez-Prieto, L. M., Villaseñor, A., Sanz, V., Ammirati, J. B., Diaz Suarez, E. A., et al. (2022). Performance of Deep Learning Pickers in Routine Network Processing Applications. Seismol. Res. Lett., 93, 2529–2542.
toggle visibility
Barenboim, G., Del Debbio, L., Hirn, J., & Sanz, V. (2024). Exploring how a generative AI interprets music. Neural Comput. Appl., 36, 17007–17022.
toggle visibility
Sanchis-Lozano, M. A., & Sanz, V. (2024). Observable imprints of primordial gravitational waves on the temperature anisotropies of the cosmic microwave background. Phys. Rev. D, 109(6), 063529–11pp.
toggle visibility
Huang, F., Sanz, V., Shu, J., & Xue, X. (2021). LIGO as a probe of dark sectors. Phys. Rev. D, 104(10), 095001–9pp.
toggle visibility
Khosa, C. K., Mars, L., Richards, J., & Sanz, V. (2020). Convolutional neural networks for direct detection of dark matter. J. Phys. G, 47(9), 095201–20pp.
toggle visibility
Hirn, J., Sanz, V., Garcia Navarro, J. E., Goberna, M., Montesinos-Navarro, A., Navarro-Cano, J. A., et al. (2024). Transfer learning of species co-occurrence patterns between plant communities. Ecol. Inform., 83, 102826–8pp.
toggle visibility
Perez-Curbelo, J., Roser, J., Muñoz, E., Barrientos, L., Sanz, V., & Llosa, G. (2025). Improving Compton camera imaging of multi-energy radioactive sources by using machine learning algorithms for event selection. Radiat. Phys. Chem., 226, 112166–11pp.
toggle visibility
Kasieczka, G. et al, & Sanz, V. (2021). The LHC Olympics 2020: a community challenge for anomaly detection in high energy physics. Rep. Prog. Phys., 84(12), 124201–64pp.
toggle visibility