
Aarrestad, T. et al, Mamuzic, J., & Ruiz de Austri, R. (2022). Benchmark data and model independent event classification for the large hadron collider. SciPost Phys., 12(1), 043–57pp.
Abstract: We describe the outcome of a data challenge conducted as part of the Dark Machines (https://www.darkmachines.org) initiative and the Les Houches 2019 workshop on Physics at TeV colliders. The challenged aims to detect signals of new physics at the Large Hadron Collider (LHC) using unsupervised machine learning algorithms. First, we propose how an anomaly score could be implemented to define modelindependent signal regions in LHC searches. We define and describe a large benchmark dataset, consisting of > 1 billion simulated LHC events corresponding to 10 fb(1) of protonproton collisions at a centerofmass energy of 13 TeV. We then review a wide range of anomaly detection and density estimation algorithms, developed in the context of the data challenge, and we measure their performance in a set of realistic analysis environments. We draw a number of useful conclusions that will aid the development of unsupervised new physics searches during the third run of the LHC, and provide our benchmark dataset for future studies at https://www.phenoMLdata.org. Code to reproduce the analysis is provided at https://github.com/bostdiek/DarkMachinesUnsupervisedChallenge.



Achterberg, A., Amoroso, S., Caron, S., Hendriks, L., Ruiz de Austri, R., & Weniger, C. (2015). A description of the Galactic Center excess in the Minimal Supersymmetric Standard Model. J. Cosmol. Astropart. Phys., 08(8), 006–27pp.
Abstract: Observations with the Fermi Large Area Telescope (LAT) indicate an excess in gamma rays originating from the center of our Galaxy. A possible explanation for this excess is the annihilation of Dark Matter particles. We have investigated the annihilation of neutralinos as Dark Matter candidates within the phenomenological Minimal Supersymmetric Standard Model (pMSSM). An iterative particle filter approach was used to search for solutions within the pMSSM. We found solutions that are consistent with astroparticle physics and collider experiments, and provide a fit to the energy spectrum of the excess. The neutralino is a Bino/Higgsino or Bino/Wino/Higgsino mixture with a mass in the range 8492 GeV or 8797 GeV annihilating into W bosons. A third solutions is found for a neutralino of mass 174187 GeV annihilating into top quarks. The best solutions yield a Dark Matter relic density 0.06 < Omega h(2) < 0.13. These pMSSM solutions make clear forecasts for LHC, direct and indirect DM detection experiments. If the pMSSM explanation of the excess seen by FermiLAT is correct, a DM signal might be discovered soon.



Achterberg, A., van Beekveld, M., Caron, S., GomezVargas, G. A., Hendriks, L., & Ruiz de Austri, R. (2017). Implications of the FermiLAT Pass 8 Galactic Center excess on supersymmetric dark matter. J. Cosmol. Astropart. Phys., 12(12), 040–23pp.
Abstract: The Fermi Collaboration has recently updated their analysis of gamma rays from the center of the Galaxy. They reconfirm the presence of an unexplained emission feature which is most prominent in the region of 110 GeV, known as the Galactic Center GeV excess (GCE). Although the GCE is now fi rmly detected, an interpretation of this emission as a signal of selfannihilating dark matter (DM) particles is not unambiguously possible due to systematic effects in the gammaray modeling estimated in the Galactic Plane. In this paper we build a covariance matrix, collecting different systematic uncertainties investigated in the Fermi Collaboration's paper that affect the GCE spectrum. We show that models where part of the GCE is due to annihilating DM is still consistent with the new data. We also reevaluate the parameter space regions of the minimal supersymmetric Standard Model (MSSM) that can contribute dominantly to the GCE via neutralino DM annihilation. All recent constraints from DM direct detection experiments such as PICO, LUX, PandaX and Xenon1T, limits on the annihilation cross section from dwarf spheroidal galaxies and the Large Hadron Collider limits are considered in this analysis. Due to a slight shift in the energy spectrum of the GC excess with respect to the previous Fermi analysis, and the recent limits from direct detection experiments, we find a slightly shifted parameter region of the MSSM, compared to our previous analysis, that is consistent with the GCE. Neutralinos with a mass between 85220 GeV can describe the excess via annihilation into a pair of Wbosons or top quarks. Remarkably, there are models with low finetuning among the regions that we have found. The complete set of solutions will be probed by upcoming direct detection experiments and with dedicated searches in the upcoming data of the Large Hadron Collider.



AguilarSaavedra, J. A., Casas, J. A., Quilis, J., & Ruiz de Austri, R. (2020). Multilepton dark matter signals. J. High Energy Phys., 04(4), 069–24pp.
Abstract: The signatures of dark matter at the LHC commonly involve, in simplified scenarios, the production of a single particle plus large missing energy, from the undetected dark matter. However, in Z ' portal scenarios anomaly cancellation requires the presence of extra dark leptons in the dark sector. We investigate the signatures of the minimal scenarios of this kind, which involve cascade decays of the extra Z ' boson into the dark leptons, identifying a fourlepton signal as the most promising one. We estimate the sensitivity to this signal at the LHC, the highluminosity LHC upgrade, a possible highenergy upgrade, as well as a future circular collider. For Z ' couplings compatible with current dijet constraints the multilepton signals can reach the 5 sigma level already at Run 2 of the LHC. At future colliders, couplings two orders of magnitude smaller than the electroweak coupling can be probed with 5 sigma sensitivity.



Allanach, B. C., Bednyakov, A., & Ruiz de Austri, R. (2015). Higher order corrections and unification in the minimal supersymmetric standard model: SOFTSUSY3.5. Comput. Phys. Commun., 189, 192–206.
Abstract: We explore the effects of threeloop minimal supersymmetric standard model renormalisation group equation terms and some leading twoloop threshold corrections on gauge and Yukawa unification: each being one loop higher order than current public spectrum calculators. We also explore the effect of the higher order terms (often 23 GeV) on the lightest CP even Higgs mass prediction. We illustrate our results in the constrained minimal supersymmetric standard model. Neglecting threshold corrections at the grand unified scale, the discrepancy between the unification scale alpha(s) and the other two unified gauge couplings changes by 0.1% due to the higher order corrections and the difference between unification scale bottomtau Yukawa couplings neglecting unification scale threshold corrections changes by up to 1%. The difference between unification scale bottom and top Yukawa couplings changes by a few percent. Differences due to the higher order corrections also give an estimate of the size of theoretical uncertainties in the minimal supersymmetric standard model spectrum. We use these to provide estimates of theoretical uncertainties in predictions of the dark matter relic density (which can be of order one due to its strong dependence on sparticle masses) and the LHC sparticle production crosssection (often around 30%). The additional higher order corrections have been incorporated into SOFTSUSY, and we provide details on how to compile and use the program. We also provide a summary of the approximations used in the higher order corrections. Program Summary Nature of problem: Calculating supersymmetric particle spectrum and mixing parameters in the minimal supersymmetric standard model. The solution to the renormalisation group equations must be consistent with boundary conditions on supersymmetry breaking parameters, as well as the weakscale boundary condition on gauge couplings, Yukawa couplings and the Higgs potential parameters. Program title: SOFTSUSY Catalogue identifier: ADPMv50 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADPMv50.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 240528 No. of bytes in distributed program, including test data, etc.: 2597933 Distribution format: tar.gz Programming language: C++, Fortran. Computer: Personal computer. Operating system: Tested on Linux 3.4.6. Word size: 64 bits. Classification: 11.1, 11.6. External routines: At least GiNaC1.3.5 [1] and CLN1.3.1 (both freely obtainable from http://www.ginac.de). Does the new version supersede the previous version?: Yes Catalogue identifier of previous version: ADPMv40 Journal reference of previous version: Comput. Phys. Comm. 185 (2014) 2322 Solution method: Nested iterative algorithm. Reasons for new version: Extension to include additional two and threeloop terms. Summary of revisions: All quantities in the minimal supersymmetric standard model are extended to have threeloop renormalisation group equations (including 3family mixing) in the limit of real parameters and some leading twoloop threshold corrections are incorporated to the third family Yukawa couplings and the strong gauge coupling. Restrictions: SOFTSUSY will provide a solution only in the perturbative regime and it assumes that all couplings of the model are real (i.e. CPconserving). If the parameter point under investigation is nonphysical for some reason (for example because the electroweak potential does not have an acceptable minimum), SOFTSUSY returns an error message. The higher order corrections included are for the real Rparity conserving minimal supersymmetric standard model (MSSM) only. Running time: A minute per parameter point. The tests provided with the package only take a few seconds to run.



Allanach, B. C., Martin, S. P., Robertson, D. G., & Ruiz de Austri, R. (2017). The inclusion of twoloop SUSYQCD corrections to gluino and squark pole masses in the minimal and nexttominimal supersymmetric standard model: SOFTSUSY3.7. Comput. Phys. Commun., 219, 339–345.
Abstract: We describe an extension of the SOFTSUSY spectrum calculator to include twoloop supersymmetric QCD (SUSYQCD) corrections of order O(alpha(2)(s)) to gluino and squark pole masses, either in the minimal supersymmetric standard model (MSSM) or the nexttominimal supersymmetric standard model (NMSSM). This document provides an overview of the program and acts as a manual for the new version of SOFTSUSY, which includes the increase in accuracy in squark and gluino pole mass predictions. Program summary Program title: SOFTSUSY Program Files doi: http://dx.doLorg/10.17632/sh77x9j7hs.1 Licensing provisions: GNU GPLv3 Programming language: C++, fortran, C Nature of problem: Calculating supersymmetric particle spectrum, mixing parameters and couplings in the MSSM or the NMSSM. The solution to the renormalization group equations must be consistent with theoretical boundary conditions on supersymmetry breaking parameters, as well as a weakscale boundary condition on gauge couplings, Yukawa couplings and the Higgs potential parameters. Solution method: Nested fixed point iteration. Restrictions: SOFTSUSY will provide a solution only in the perturbative regime and it assumes that all couplings of the model are real (i.e. CPconserving). If the parameter point under investigation is nonphysical for some reason (for example because the electroWeak potential does not have an acceptable minimum), SOFTSUSY returns an error message. The higher order corrections included are for the MSSM (Rparity conserving or violating) or the real Rparity conserving NMSSM only. Journal reference of previous version: Comput. Phys. Comm. 189 (2015) 192. Does the new version supersede the previous version?: Yes. Reasons for the new version: It is desirable to improve the accuracy of the squark and gluinos mass predictions, since they strongly affect supersymmetric particle production crosssections at colliders. Summary of revisions: The calculation of the squark and gluino pole masses is extended to be of nextto nextto leading order in SUSYQCD, i.e. including terms up to O(g(s)(4)/(16 pi(2))(2)). Additional comments: Program obtainable from http://softsusy.hepforge.org/



Amoroso, S., Caron, S., Jueid, A., Ruiz de Austri, R., & Skands, P. (2019). Estimating QCD uncertainties in Monte Carlo event generators for gammaray dark matter searches. J. Cosmol. Astropart. Phys., 05(5), 007–44pp.
Abstract: Motivated by the recent galactic center gammaray excess identified in the FermiLAT data, we perform a detailed study of QCD fragmentation uncertainties in the modeling of the energy spectra of gammarays from DarkMatter (DM) annihilation. When DarkMatter particles annihilate to coloured final states, either directly or via decays such as W(*) > qq', photons are produced from a complex sequence of shower, hadronisation and hadron decays. In phenomenological studies their energy spectra are typically computed using Monte Carlo event generators. These results have however intrinsic uncertainties due to the specific model used and the choice of model parameters, which are difficult to asses and which are typically neglected. We derive a new set of hadronisation parameters (tunes) for the PYTHIA 8.2 Monte Carlo generator from a fit to LEP and SLD data at the Z peak. For the first time we also derive a conservative set of uncertainties on the shower and hadronisation model parameters. Their impact on the gammaray energy spectra is evaluated and discussed for a range of DM masses and annihilation channels. The spectra and their uncertainties are also provided in tabulated form for future use. The fragmentationparameter uncertainties may be useful for collider studies as well.



Arina, C., Di Mauro, M., Fornengo, N., Heisig, J., Jueid, A., & Ruiz de Austri, R. (2024). CosmiXs: cosmic messenger spectra for indirect dark matter searches. J. Cosmol. Astropart. Phys., 03(3), 035–41pp.
Abstract: The energy spectra of particles produced from dark matter (DM) annihilation or decay are one of the fundamental ingredients to calculate the predicted fluxes of cosmic rays and radiation searched for in indirect DM detection. We revisit the calculation of the source spectra for annihilating and decaying DM using the VINCIA shower algorithm in PYTHIA to include QED and QCD final state radiation and diagrams for the EW corrections with massive bosons, not present in the default PYTHIA shower model. We take into account the spin information of the particles during the entire EW shower and the off shell contributions from massive gauge bosons. Furthermore, we perform a dedicated tuning of the VINCIA and PYTHIA parameters to LEP data on the production of pions, photons, and hyperons at the Z resonance and discuss the underlying uncertainties. To enable the use of our results in DM studies, we provide the tabulated source spectra for the most relevant cosmic messenger particles, namely antiprotons, positrons, gamma rays and the three neutrino flavors, for all the fermionic and bosonic channels and DM masses between 5 GeV and 100 TeV, on github.



Balazs, C. et al, Mamuzic, J., & Ruiz de Austri, R. (2021). A comparison of optimisation algorithms for highdimensional particle and astrophysics applications. J. High Energy Phys., 05(5), 108–46pp.
Abstract: Optimisation problems are ubiquitous in particle and astrophysics, and involve locating the optimum of a complicated function of many parameters that may be computationally expensive to evaluate. We describe a number of global optimisation algorithms that are not yet widely used in particle astrophysics, benchmark them against random sampling and existing techniques, and perform a detailed comparison of their performance on a range of test functions. These include four analytic test functions of varying dimensionality, and a realistic example derived from a recent global fit of weakscale supersymmetry. Although the best algorithm to use depends on the function being investigated, we are able to present general conclusions about the relative merits of random sampling, Differential Evolution, Particle Swarm Optimisation, the Covariance Matrix Adaptation Evolution Strategy, Bayesian Optimisation, Grey Wolf Optimisation, and the PyGMO Artificial Bee Colony, Gaussian Particle Filter and Adaptive Memory Programming for Global Optimisation algorithms.



Beenakker, W., Caron, S., Kip, J., Ruiz de Austri, R., & Zhang, Z. (2023). New energy spectra in neutrino and photon detectors to reveal hidden dark matter signals. J. High Energy Phys., 11(11), 028–13pp.
Abstract: Neutral particles capable of travelling cosmic distances from a source to detectors on Earth are limited to photons and neutrinos. Examination of the Dark Matter annihilation/decay spectra for these particles reveals the presence of continuum spectra (e.g. due to fragmentation and W or Z decay) and peaks (due to direct annihilations/decays). However, when one explores extensions of the Standard Model (BSM), unexplored spectra emerge that differ significantly from those of the Standard Model (SM) for both neutrinos and photons. In this paper, we argue for the inclusion of important spectra that include peaks as well as previously largely unexplored entities such as boxes and combinations of box, peak and continuum decay spectra.

