|
Contreras, T., Martins, A., Stanford, C., Escobar, C. O., Guenette, R., Stancari, M., et al. (2023). A method to characterize metalenses for light collection applications. J. Instrum., 18(9), T09004–11pp.
Abstract: Metalenses and metasurfaces are promising emerging technologies that could improve light collection in light collection detectors, concentrating light on small area photodetectors such as silicon photomultipliers. Here we present a detailed method to characterize metalenses to assess their efficiency at concentrating monochromatic light coming from a wide range of incidence angles, not taking into account their imaging quality.
|
|
|
Martins, A., da Mota, A. F., Stanford, C., Contreras, T., Martin-Albo, J., Kish, A., et al. (2024). Simple strategy for the simulation of axially symmetric large-area metasurfaces. J. Opt. Soc. Am. B, 41(5), 1261–1269.
Abstract: Metalenses are composed of nanostructures for focusing light and have been widely explored in many exciting applications. However, their expanding dimensions pose simulation challenges. We propose a method to simulate metalenses in a timely manner using vectorial wave and ray tracing models. We sample the metalens's radial phase gradient and locally approximate the phase profile by a linear phase response. Each sampling point is modeled as a binary blazed grating, employing the chosen nanostructure, to build a transfer function set. The metalens transmission or reflection is then obtained by applying the corresponding transfer function to the incoming field on the regions surrounding each sampling point. Fourier optics is used to calculate the scattered fields under arbitrary illumination for the vectorial wave method, and a Monte Carlo algorithm is used in the ray tracing formalism. We validated our method against finite -difference time domain simulations at 632 nm, and we were able to simulate metalenses larger than 3000 wavelengths in diameter on a personal computer.
|
|