NEXT Collaboration(Renner, J. et al), Alvarez, V., Carcel, S., Cervera-Villanueva, A., Diaz, J., Ferrario, P., et al. (2015). Ionization and scintillation of nuclear recoils in gaseous xenon. Nucl. Instrum. Methods Phys. Res. A, 793, 62–74.
Abstract: Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope a-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.
|
NEXT Collaboration(Renner, J. et al), Benlloch-Rodriguez, J., Botas, A., Ferrario, P., Gomez-Cadenas, J. J., Alvarez, V., et al. (2017). Background rejection in NEXT using deep neural networks. J. Instrum., 12, T01004–21pp.
Abstract: We investigate the potential of using deep learning techniques to reject background events in searches for neutrinoless double beta decay with high pressure xenon time projection chambers capable of detailed track reconstruction. The differences in the topological signatures of background and signal events can be learned by deep neural networks via training over many thousands of events. These networks can then be used to classify further events as signal or background, providing an additional background rejection factor at an acceptable loss of efficiency. The networks trained in this study performed better than previous methods developed based on the use of the same topological signatures by a factor of 1.2 to 1.6, and there is potential for further improvement.
|
NEXT Collaboration(Renner, J. et al), Kekic, M., Martinez-Lema, G., Alvarez, V., Benlloch-Rodriguez, J. M., Carcel, S., et al. (2019). Energy calibration of the NEXT-White detector with 1% resolution near Q(beta beta) of Xe-136. J. High Energy Phys., 10(10), 230–13pp.
Abstract: Excellent energy resolution is one of the primary advantages of electroluminescent high-pressure xenon TPCs. These detectors are promising tools in searching for rare physics events, such as neutrinoless double-beta decay (beta beta 0 nu), which require precise energy measurements. Using the NEXT-White detector, developed by the NEXT (Neutrino Experiment with a Xenon TPC) collaboration, we show for the first time that an energy resolution of 1% FWHM can be achieved at 2.6 MeV, establishing the present technology as the one with the best energy resolution of all xenon detectors for beta beta 0 nu searches.
|
NEXT Collaboration(Renner, J. et al), Martinez-Lema, G., Alvarez, V., Benlloch-Rodriguez, J. M., Botas, A., Carcel, S., et al. (2018). Initial results on energy resolution of the NEXT-White detector. J. Instrum., 13, P10020–14pp.
Abstract: One of the major goals of the NEXT-White (NEW) detector is to demonstrate the energy resolution that an electroluminescent high pressure xenon TPC can achieve for high energy tracks. For this purpose, energy calibrations with Cs-137 and Th-232 sources have been carried out as a part of the long run taken with the detector during most of 2017. This paper describes the initial results obtained with those calibrations, showing excellent linearity and an energy resolution that extrapolates to approximately 1% FWHM at Q(beta beta).
|