|
Mata, R., Cros, A., Gimeno, B., & Raboso, D. (2024). Secondary electron emission yield in thick dielectric materials: a comparison between Kelvin probe and capacitive methods. J. Phys. D, 57(40), 405302–9pp.
Abstract: The recent high demand of secondary electron emission yield (SEY) measurements in dielectric materials from space industry has driven SEY laboratories to improve their facilities and measurement techniques. SEY determination by the common capacitive method, also known as pulsed method, is well accepted and has given satisfactory results in most cases. Nevertheless, the samples under study must be prepared according to the experimental limitations of the technique, i.e. they should be manufactured separated from the devices representing faithfully the surface state of the own device and be as thin as possible. A method based on the Kelvin probe (KP) is proposed here to obtain the SEY characteristics of electrically floating Platinum, Kapton and Teflon placed over dielectric spacers with thicknesses ranging from 1.6 to 12.1 mm. The results are compared with those of the capacitive method and indicate that KP SEY curves are less sensitive to spacer thickness. An explanation based on the literature is also given. In all, we have established that KP is better suited for the analysis of dielectric samples thicker than 3 mm.
|
|
|
Vague, J., Melgarejo, J. C., Boria, V. E., Guglielmi, M., Moreno, R., Reglero, M., et al. (2019). Experimental Validation of Multipactor Effect for Ferrite Materials Used in L- and S-Band Nonreciprocal Microwave Components. IEEE Trans. Microw. Theory Tech., 67(6), 2151–2161.
Abstract: This paper reports on the experimental measurement of power threshold levels for the multipactor effect between samples of ferrite material typically used in the practical implementation of L-and S-band circulators and isolators. For this purposes, a new family of wideband, nonreciprocal rectangular waveguide structures loaded with ferrites has been designed with a full-wave electromagnetic simulation tool. The design also includes the required magnetostatic field biasing circuits. The multipactor breakdown power levels have also been predicted with an accurate electron tracking code using measured values for the secondary electron yield (SEY) coefficient. The measured results agree well with simulations, thereby fully validating the experimental campaign.
|
|