Liu, B. C., & Xie, J. J. (2012). The K- p -> eta Lambda reaction in an effective Lagrangian model. Phys. Rev. C, 85(3), 038201–4pp.
Abstract: We report on a theoretical study of the K- p -> eta Lambda reaction near threshold by using an effective Lagrangian approach. The role of s-channel Lambda(1670), t-channel K*, and u-channel proton pole diagrams are considered. We show that the total cross section data are well reproduced. However, only including the s-wave Lambda(1670) state and the background contribution from t and u channels is not enough to describe the bowl structures in the angular distribution of the K- p -> eta Lambda reaction, which indicates that there should be higher partial waves contributing to this reaction in some energy region. Indeed, if we considered the contributions from a D-03 resonance, we could describe the bowl structures; however, a rather small width (similar to 2 MeV) of this resonance would be needed.
|
Lei, B. F., Zhang, H., Bontoiu, C., Bonatto, A., Martin-Luna, P., Liu, B., et al. (2025). Leaky surface plasmon-based wakefield acceleration in nanostructured carbon nanotubes. Plasma Phys. Control. Fusion, 67(6), 065036–11pp.
Abstract: Metallic carbon nanotubes (CNTs) can provide ultra-dense, homogeneous plasma capable of sustaining resonant plasma waves-known as plasmons-with ultra-high field amplitudes. These waves can be efficiently driven by either high-intensity laser pulses or high-density relativistic charged particle beams. In this study, we use numerical simulations to propose that electrons and positrons can be accelerated in wakefields generated by the leaky electromagnetic field of surface plasmons. These plasmons are excited when a high-intensity optical laser pulse propagates paraxially through a cylindrical vacuum channel structured within a CNT forest. The wakefield is stably sustained by a non-evanescent longitudinal field with TV m-1-level amplitudes. This mechanism differs significantly from the plasma wakefield generation in uniform gaseous plasmas. Travelling at the speed of light in a vacuum, with phase-matched focusing fields, the wakefield acceleration is highly efficient for both electron and positron beams. We also examine two potential electron injection mechanisms: edge injection and self-injection. Both mechanisms are feasible with current laser facilities, paving the way for experimental realisation. Beyond presenting a novel method toward ultra-compact, high-energy solid-state plasma particle accelerators with ultra-high acceleration gradients, this work also expands the potential of high-energy plasmonics.
|
Diel, F., Fujita, Y., Fujita, H., Cappuzzello, F., Ganioglu, E., Grewe, E. W., et al. (2019). High-resolution study of the Gamow-Teller (GT_) strength in the Zn-64(He-3, t) Ga-64 reaction. Phys. Rev. C, 99(5), 054322–10pp.
Abstract: Gamow-Teller (GT) transitions starting from the T-z = +2 nucleus Zn-64 to the T-z = +1 nucleus Ga-64 were studied in a (p, n)-type (He-3,t) charge-exchange reaction at a beam energy of 140 MeV/nucleon and scattering angles close to 0 degrees. Here, T-z is the z component of the isospin T. The experiment was conducted at the Research Center for Nuclear Physics (RCNP) in Osaka, Japan. An energy resolution of approximate to 34 keV was achieved by applying beam matching techniques to the Grand Raiden magnetic spectrometer system. With our good resolution, we could observe GT strength fragmented in many states up to an excitation energy of approximate to 11 MeV. By performing angular distribution analysis, we could identify states in Ga-64 excited by GT transitions. The reduced GT transition strengths [B(GT)values] were calculated assuming the proportionality between the cross sections and the B(GT)values. Shell-model calculations using the GXPF1J interaction reproduced the B(GT)strength distribution throughout the spectrum. States with isospin T = 3 were identified by comparing the Zn-64(He-3,t)Ga-64 spectrum with a Zn-64(d, He-2)Cu-64 spectrum. Relative excitation energies of the corresponding structures are in good agreement, supporting the robustness of isospin symmetry in the mass number A = 64 nuclei.
|